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10. Flow in Converging-Diverging Nozzles 
 
Consider flow through a converging-diverging nozzle (aka a deLaval nozzle) as shown below.   
 
 
 
 
 
 
 
 
 
 
 
Let’s hold the stagnation pressure, p0, fixed and vary the back pressure, pB.  The plot below shows how the 
static pressure ratio, p/p0, varies with location, x, for various values of the back pressure ratio, pB/p0: 
 
 
 
 
 
 
 
 
 
 
 
 
Cases: 
1. There is no flow through the device since  pB = p0. 
2. There is subsonic flow throughout the device and  pE = pB.  Also, MaT < 1, AT > A*, MaE < 1, 

 m < mchoked .  The flow everywhere is isentropic. 
3. There is subsonic flow throughout the device except at the throat where pT = p* (MaT = 1, AT = A*).  

The flow is now choked ( m = mchoked ); further decreases in pB will not affect the flow upstream of the 
throat and the mass flow rate will remain at the choked mass flow rate value.  The exit pressure will 
equal the back pressure, pE = pB, since the flow is subsonic at the exit (MaE < 1).  The flow everywhere 
is isentropic. 

4. Subsonic flow will occur in the converging section, sonic flow will occur at the throat (pT = p*, MaT 
=1, AT = A*), and supersonic flow will occur in the diverging section (MaE > 1).  This type of flow is 
called correctly expanded flow or flow at design conditions since no shock waves form anywhere in 
the device and pE = pB.  Note that pE does not equal pB because the flow is subsonic at the exit, but 
because the flow is at design conditions (a special case). 

5. Subsonic flow will occur in the converging section and sonic flow will occur at the throat (pT = p*, MaT 
= 1, AT = A*

1).  A portion of the diverging section will be supersonic with a normal shock wave 
occurring at a location such that the subsonic flow downstream of the flow will have an exit pressure 
equal to the back pressure:  pE = pB (MaE < 1).  As the back pressure decreases, the shock wave moves 
downstream of the throat and toward the exit.  The pressure rise across the shock wave also increases 
as the back pressure decreases.  There is isentropic flow upstream of the shock and downstream of it, 
but across the shock the flow is non-isentropic. 

6. This case is similar to case 5 except that the shock wave is precisely at the nozzle exit.  The pressure 
just downstream of the shock wave equals the back pressure since the flow is subsonic there (pE2 = pB, 
MaE2 < 1).  The flow everywhere within the C-D nozzle is isentropic except right at the exit. 

7. The flow within the C-D nozzle (and the exit) is isentropic (MaE > 1).  The normal shock that was 
located at the exit for case 6 has moved outside the device to form a complicated sequence of oblique 
shock waves alternating with expansion fans (these are 2D phenomena to be discussed in a following 
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section of notes).  This case is called the overexpanded case since the diverging section of the device 
has an area that overexpands the flow to a pressure that is lower than the back pressure (pE < pB).  
External shock waves are required to compress the flow to match the back pressure. 

8. This case is similar to case 7 except that the flow outside of the device forms a sequence of expansion 
fans alternating with oblique shock waves (a sequence out of phase with the sequence mentioned in 
case 7).  This case is called the underexpanded case since the diverging section of the device has an 
area that is not large enough to drop the exit pressure to the back pressure (pE > pB, MaE > 1).  External 
expansion waves are required expand the flow to match the back pressure. 

 
 

Notes: 
1. The critical back pressure ratio corresponding to case 3 can be found from the isentropic relations (the 

flow throughout the entire device is isentropic).  Assume that the geometry, and hence the exit-to-
throat area ratio, Ae/At, is given.  Since for case 5 the flow is choked we know that At = A*.  
Furthermore, since the exit flow is subsonic we also know that pe = pb.  From the area ratio we can 
determine the exit Mach number, Mae: 
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  (where the subsonic Mae is chosen) 

The back pressure ratio, pb/p0, for case 5 can be determined given the exit Mach number. 
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2. The critical back pressure ratio corresponding to case 4 can be determined in a manner similar to that 

described above in Note 1.  For case 4 however, the supersonic value for Mae should be used when 
determining the exit Mach number from the area ratio. 

 
3. The critical back pressure ratio corresponding to case 6 can be found by combining the isentropic 

relations with the normal shock wave relations.  When the shock wave occurs right at the exit of the 
device, the flow just upstream of the exit can be found from the isentropic relations: 
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 (where the supersonic Mae1 is chosen) 
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Note that the subscript ‘1’ denotes the conditions just upstream of the shock wave.  To determine the 
conditions just downstream of the shock we use the normal shock wave relations: 
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where pe2 is the pressure just downstream of the shock.  Since the downstream flow is subsonic and 
because we’re at the exit of the device, the downstream pressure, pe2, must also equal the back 
pressure, pb.  Thus, 
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4. The location of a shock wave for a back pressure in the range corresponding to case 3 and case 5 can 
be determined through iteration.   
a. Assume a location for the shock wave (e.g., pick a value for A/At since the geometry is known). 
b. Determine the Mach number and pressure just upstream of the shock, Ma1 and p1, using the 

isentropic relations as discussed in Note 2. 
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 (where the supersonic Ma1 is chosen) 
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c. Calculate the stagnation pressure ratio and sonic area ratio across the shock using the normal 
shock relations: 
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d. Determine the exit Mach number and exit pressure ratio using the isentropic relations and the 
downstream sonic area and stagnation pressure: 
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(where the subsonic Mae is chosen) 

Note that since the flow is choked, the throat area is equal to the upstream sonic area, i.e., At = A1
*. 
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Note that since the exit Mach number is subsonic, the exit pressure will equal the back pressure, 
i.e., pe = pb. 

e. Calculate the ratio of the back pressure to the upstream stagnation pressure: 
02
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f. Check to see if the back pressure ratio calculated in step (e) matches with the given back pressure 
ratio.  If so, then the assumed location of the shock is correct.  If not, then the go back to step (a) 
and repeat.  If the back pressure ratio calculated in part (e) is less than the given back pressure 
ratio, then the assumed shock location is too far downstream.  If the back pressure ratio calculated 
in part (e) is greater than the given back pressure ratio, then the assumed shock location is too far 
upstream.   
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 (Figure from:  Liepmann, H.W. and Roshko, A., Elements of Gasdynamics, Wiley.) 
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5. In real nozzles flows, the flow will typically separate from the nozzle walls as a result of the large 
adverse pressure gradient occurring across a shock wave.  Interaction of the shock with the separated 
boundary layer results in a more gradual pressure rise than what is expected for the ideal, normal shock 
analysis.  

 
It is also possible that downstream pressure information can propagate upstream in the diverging 
section even when the core flow is supersonic.  In a real flow, a boundary layer will form along the 
wall with the flow in part of this boundary layer being subsonic.  Thus, pressure information can 
propagate upstream within the subsonic part of the boundary layer and affect the flow in the diverging 
section.  When the back pressure is in the range corresponding to Case 7 (back pressure less than the 
exit pressure when a shock stands at the exit, and greater than the isentropic case corresponding to 
supersonic diverging section flow), oblique shocks will typically form within the diverging section and 
flow separation occurs as shown in the figures below.  The exact pressure and location of the 
separation point are dependent on the boundary layer flow.  
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A converging-diverging nozzle with pressure taps along the 
length of the device.  The flow is from left to right. 

The pressure ratio as a function of the axial distance in the CD nozzle for various back pressures. 

Note the gradual 
pressure rise due to the 
interaction between the 
shock and the 
separated boundary 
layer. 
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