Determine the magnitude and direction of the shear stress that the water applies:

- a.
- to the base to the free surface b.

$$\frac{u}{t} = 2\left(\frac{y}{t}\right) - \left(\frac{y}{t}\right)$$

SOLUTION:

The shear stress, τ_{yx} , acting on a Newtonian fluid is given by:

$$\tau_{yx} = \mu \frac{du}{dy} \tag{1}$$

where

$$\frac{du}{dy} = U\left(2\frac{1}{h} - \frac{2y}{h^2}\right) \tag{2}$$

Evaluating the shear stress at the base and free surface gives:

base
$$(y=0)$$
:
$$\left|\tau_{yx}\right|_{y=0} = \frac{2\mu U}{h}$$
 (3)

This is the stress the wall exerts on the fluid. The fluid will exert an equal but opposite stress on the wall.

free surface
$$(y = h)$$
: $\left[\tau_{yx} \Big|_{y=h} = 0 \right]$ (4)

The air at the free surface does not exert a stress on the water. Although in reality the air will exert a small shear stress on the water, assuming that the shear stress is negligible is reasonable in most engineering applications.