
Viscosity and Viscous Stresses 

 
https://livestream.com/accounts/4931571/events/5369913/videos/134070866 
 
  



Viscosity and Viscous Stresses 

(dynamic) Viscosity, µ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

C. Wassgren  Last Updated:  16 Nov 2016 
Chapter 01:  The Basics 

where the subscript on the stress indicates that the shear stress acts on a y-plane in the x-
direction.  The x-subscript on the velocity indicates that it is the x-component. We will review 
this sign convention in greater detail later in the notes when discussing stresses (Chapter 03). 

 
- In a non-Newtonian fluid the shear stress is not proportional to the deformation rate but instead 

varies in some other way.  
- Non-Newtonian fluids are further classified by how the shear stress varies with deformation 

rate.  The apparent viscosity, µapp, is the viscosity at the local conditions as shown in the plot 
below (for a Newtonian fluid the apparent viscosity remains constant). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
- In shear thinning (aka psuedoplastic) fluids, the apparent viscosity decreases as the shear 

stress increases.  Examples of shear thinning fluids include blood, latex paint, and cookie 
dough. 

- In shear thickening (aka dilatant) fluids, the apparent viscosity increases as the shear stress 
increases.  An example of a shear thickening fluid is quicksand or a thick cornstarch-water 
mixture. 

 
- Viscosity is weakly dependent on pressure but is sensitive to temperature.  For liquids, the 

viscosity generally decreases as the temperature increases and increases as pressure increases.  
Changes in temperature and pressure can be very significant in lubrication problems.  For gases, 
the viscosity increases as the temperature increases (in fact, from kinetic theory one can show that 
µ ∝ T1/2).  The following plot shows the variation in dynamic viscosity with temperature for 
several fluids. 
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µH20@20 °C = 1.00*10-3 N⋅s/m2 = 1 cP  
µair@20 °C = 1.81*10-5 N⋅s/m2 = 0.018 cP 
 

(Plot from Fox, R.W. and 
McDonald, A.T., Introduction to 
Fluid Mechanics, 5th ed., Wiley.) 
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- The kinematic viscosity, ν, is a quantity that appears often in fluid mechanics.  It is defined as: 
µν
ρ

≡  

The dimensions of kinematic viscosity are {L2/T} with common units of [m2/s, ft2/s].  Another 
common unit for kinematic viscosity is the Stoke:  1 Stoke = 1 cm2/s.  Note that kinematic 
viscosity has the dimensions of a diffusion coefficient.  The kinematic viscosity is a measure of 
how rapidly momentum diffuses into a flow.  This point will be discussed again in a later set of 
notes when reviewing solutions to the Navier-Stokes equations (Chapter 06). 

 
- There are several techniques for measuring the viscosity of a fluid.  Several devices include the: 

- Couette viscometer 
- capillary tube viscometer 
- sedimentation rate viscometer 
- falling ball or falling cylinder viscometer 
- rotating disk or oscillating disk viscometer 
A good reference on experimental viscometry is:  Dinsdale, A. and Moore, F., Viscosity and its 
Measurement, Chapman and Hall. 

 
- Let’s examine a common flow situation shown in the figure below.  A fluid is contained between 

two, infinitely long parallel plates separated by a distance H.  The bottom plate is fixed while the 
top plate moves at a constant velocity V.  There are no pressure gradients in the fluid.  This type of 
flow situation is called a planar Couette flow. 

 
 
 
 
 
 
 
 

- One of the first things we would notice when conducting this experiment is that the fluid sticks to 
the solid boundaries, i.e., there is zero relative velocity between the fluid and the boundary.  This 
is referred to as the no-slip condition.  The no-slip condition occurs for all real, viscous fluids 
under normal conditions.  (The no-slip condition may be violated in rarefied flows where the 
motion of individual molecules becomes significant, i.e., when the Knudsen number is Kn > 0.1.) 

 
- The second thing we would notice is that the fluid velocity profile is linear with the velocity given 

by, 
yu V
H

⎛ ⎞= ⎜ ⎟⎝ ⎠
 

Note that the velocity at the bottom plate is zero and at the top plate the velocity is V; thus, the 
no-slip condition is satisfied.  We will derive this velocity profile later in these notes when 
discussing solutions to the Navier-Stokes equations (Chapter 06). 

 

νH20@20 °C = 1.00*10-6 m2/s = 1 cSt  
νair@20 °C = 1.50*10-5 m2/s = 15 cSt 
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- If the fluid is Newtonian, then the shear stress acting on the fluid is, 

 x
yx

du V
dy H

τ µ µ= =  

Note that the shear stress is a constant everywhere in the fluid, i.e., there is no y dependence.  
Additionally, the shear stress will act to resist the motion of the top plate and try to carry the 
bottom plate along with the fluid. 

 
 

 
 
 
 
 
 
 
- An inviscid flow is one in which the viscous stresses are negligible (τ ≈ 0).  There are two ways to 

have negligible viscous stresses.  First, the viscosity could be negligibly small, but there are no 
common fluids that have µ ≈ 0 (although superfluid helium does have µ = 0, but it’s not a common 
fluid!).  The second method is to have a small velocity gradient, e.g., dux/dy ≈ 0.  This condition is 
quite common.  For example, a plug flow where the velocity profile is constant (ux = constant) is 
truly an inviscid flow since dux/dy = 0 => τ = 0.  There are many cases where assuming that the 
flow is inviscid is a reasonable approximation.  In addition, many analyses of fluid flow rely on an 
inviscid flow assumption in order to make the mathematics of the analyses tractable without the 
use of computers.  Note that the no-slip condition does not hold when the flow is inviscid. 

 
- An ideal flow is one that is both incompressible and inviscid.  The ideal flow approximation is 

often reasonable and is commonly used in fluid mechanics analyses.  We’ll consider ideal fluid 
flow in Chapter 04. 

 
 
Be Sure To: 
1. Get your shear stress directions correct.  Equation (41) is the shear stress acting on the fluid element.   
2. Use the correct area when evaluating shear forces. 
3. Integrate to determine a shear force on an area where the shear stress is not uniform over the area. 
4. Evaluate the velocity gradient in Eq. (41) at the location where you’re interested in determining the 

shear stress. 
  

positive shear stress acting 
on fluid element next to wall 
(refer to the stress sign 
convention in Chapter 03) 

shear stress acting on wall 
due to fluid 
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