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Why analyze measurement uncertainty? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Types of Measurement Uncertainty 
 

Blunders: 
 
 
 
 
 
 
 
 
Systematic (or fixed) uncertainty: 

 

 
 
 
 
 
 
Random uncertainty: 
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Estimation of Uncertainty 
 

Single Sample Experiments (aka Type B uncertainty) 
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3. Random errors occur due to unknown factors.  These errors are not correctable, in general. 
 
Blunders and systematic errors can be avoided or corrected.  It is the random errors that we must account 
for in uncertainty analyses.  How we quantify random errors depends on whether we conduct a single 
experiment or multiple experiments.  Each case is examined in the following sections. 
 
1. Single Sample Experiments 
 

A single sample experiment is one in which a measurement is made only once.  This approach is 
common when the cost or duration of an experiment makes it prohibitive to perform multiple 
experiments. 
 
The measure of uncertainty in a single sample experiment is ±1/2 the smallest scale division (or least 
count) of the measurement device.  For example, given a thermometer where the smallest discernable 
scale division is 1 °C, the uncertainty in a temperature measurement will be ±0.5 °C.  If your eyesight 
is poor and you can only see 5 °C divisions, then the uncertainty will be ±2.5 °C.  One should use an 
uncertainty within which they are 95% certain that the result lies. 
 
 

Example: 
 
 

The least count for the ruler to 
the left is 1 mm.  Hence, the 
uncertainty in the length 
measurement will be ±0.5 mm. 

 
 
 
 
 
 
 
 

 
 

Example: 
You use a manual electronic stop watch to measure the speed of a person running the 100 m dash.  The 
stop watch gives the elapsed time to 1/1000th of a second.  What is the least count for the measurement? 
 
SOLUTION: 
 
Although the stop watch has a precision of 1/1000th of a second, you cannot respond quickly enough to 
make this the limiting uncertainty.  Most people have a reaction time of 1/10th of a second.  (Test 
yourself by having a friend drop a ruler between your fingers.  You can determine your reaction time 
by where you catch the ruler.)  Hence, to be 95% certain of your time measurement, you should use an 
uncertainty of ±1/2(0.1 sec) = ±0.05 sec. 
 

Be Sure To: 
1. Always indicate the uncertainty of any experimental measurement. 
2. Carefully design your experiments to minimize sources of error. 
3. Carefully evaluate your least count.  The least count is not always ±1/2 of the smallest scale division. 

 

 

What is the least count for this ruler? 
 
 
 
What is the measurement uncertainty using this ruler? 
 
 
 
What is the length of the yellow box? 

What is the least count for this stopwatch? 
 
 
 
What is the measurement uncertainty using this stopwatch? 
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Multiple Sample Experiments (aka Type A uncertainty) 
 

         
 multiple times 

 
 

The Normal (aka Gaussian) Probability Distribution: 
 

 
 
 
Sample (Arithmetic) Mean (𝑥̅): 

𝑥̅ =
1
𝑁
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Sample Variance (s2) and Sample Standard Deviation (s): 
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Standard Error of the Sample Mean (𝑠0̅): 
 
 
 
 
 
 
 
 
 
 
 
 
 

Standard Error  = standard deviation of sample means 
𝑠0̅ ≈

2
√(

    =>   𝑠0̅ ≈ 6.99  (based on Trial 1) 
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2. Multiple Sample Experiment 
 

A multiple sample experiment is one where many different trials are conducted in which the same 
measurement is made. 
 
Example: 
- making temperature measurements in many “identical” hot cavities (shown below) or making 

temperature measurements in the same cavity many different times 
 
 
 
 
 
 
 
 

 
We can use statistics to estimate the random error associated with a multiple sample experiment.  For 
truly random errors, the distribution of errors will follow a Gaussian (or normal) distribution which has 
the following qualitative histogram: 

 
 
 
 
 
 
 
 
 
 
 

 
To quantify the set of measurement data, we commonly use the mean of the data set and its standard 
deviation or variance.  For example, consider N measurements of some parameter x:  x1, x2, …, xN. 
 

sample mean, x  (a type of average)  

1

1 N

n
n

x x
N =

= ∑  (18) 

 
sample standard deviation, σ (a measure of how precise the measurements are:  as σ ↓, the 
precision ↑)  
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∑   (Note:  The variance is σ2.) (19) 

 

many identical cavities and thermometers 

measurement value 
(e.g., temperature) 

# of measurements 
with a particular 

measurement value 
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many identical cavities and thermometers 

measurement value 
(e.g., temperature) 

# of measurements 
with a particular 

measurement value 

 

or 

𝑝(𝑥) =
1

√2𝜋𝜎,
exp >−

(𝑥 − 𝜇),

2𝜎,
@ 

A 𝑝(𝑥)𝑑𝑥
CD

ED
= 1 

𝜇 = 100 𝜎, = 400 (𝜎 = 20) 
# xi 

1 99.36 
2 121.02 
3 131.73 
4 119.56 
5 94.31 
6 114.74 
7 78.33 

 
𝑥̅ = 108.44 𝑠, = 342.05		(𝑠 = 18.49) 
 

𝜇 = 100 𝜎, = 400 (𝜎 = 20) 
 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

# xi xi xi xi xi xi 
1 99.36 120.20 80.92 72.20 130.41 86.54 
2 121.02 76.56 88.64 95.92 116.38 100.09 
3 131.73 93.18 93.32 100.04 113.11 112.06 
4 119.56 65.21 98.33 82.72 103.82 128.79 
5 94.31 105.08 143.42 72.67 102.18 88.30 
6 114.74 102.21 116.85 147.12 101.71 99.12 
7 78.33 76.47 98.88 104.78 96.41 79.68 
𝒙M = 108.44 91.27 102.91 96.49 109.15 99.22 
𝒔𝟐 = 342.05 377.60 442.04 665.40 135.73 283.68 
𝒔 = 18.49 19.43 21.02 25.80 11.65 16.84 

       
 

 
• Frequency plot of the trial mean values (𝑥̅). 
• Superimposed normal distribution using:   

µ = mean of the trial means 
𝜎 = 𝑠0̅ = 6.99 
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Confidence Interval (CI): 
 

 
 
 
For typical engineering applications:  CI = 95%  (≈ ±1.96𝜎) 
 

𝑥̅ − 1.96𝑠0̅ < 𝜇 < 𝑥̅ + 1.96𝑠0̅  (95% CI)    or    𝜇 = 𝑥̅ ± 1.96𝑠0̅ = 𝑥̅ ± 1.96 2
√(

  (95% CI)	
 

 
t-distribution factor 

 
 

𝑥̅ − 𝑡TU%𝑠0̅ < 𝜇 < 𝑥̅ + 𝑡TU%𝑠0̅  (95% CI)   or   𝜇 = 𝑥̅ ± 𝑡TU%𝑠0̅ = 𝑥̅ ± 𝑡TU%
2
√(

  (95% CI) 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What happens as the number of measurements increases? 
 
What happens as the sample standard deviation decreases? 
 
What’s the difference between the sample standard deviation and the standard error of the sample mean? 
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Notes: 
1. It is not reasonable to comprehensively discuss statistical analyses of data within the scope of 

these notes.  The reader is encouraged to look through an introductory text on statistics for 
additional information (see, for example, Vardeman, S.B., Statistics for Engineering Problem 
Solving, PWS Publishing, Boston).  

2. The square of the standard deviation (σ2) is known as the variance. 
3. The coefficient of variation, CoV or CV (also rsd = relative standard deviation), is defined as the 

ratio of the standard deviation to the mean, i.e.,  CoV xσ≡ .  A small CoV means that the scatter 
in your measurements is small compared to the mean. 

4. For random data (a Gaussian or normal distribution) and a very large number of measurements: 
68% 1
95% of measurements fall between 2
99% 3

x
x
x

σ
σ
σ

±⎫ ⎧
⎪ ⎪ ±⎬ ⎨
⎪ ⎪ ±⎭ ⎩

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. If the number of measurements is not very large (N < 30, for example), it is better to use the 
Student’s t-distribution for estimating the uncertainty (refer to an introductory text on statistics 
such as Vardeman, S.B., Statistics for Engineering Problem Solving, PWS Publishing, Boston): 

x tσ±  (20) 
where t is a factor related to the degree of confidence desired (again, a 95% uncertainty is typically 
desired in engineering applications), σ is the standard deviation given in Eq. (19), and N is the 
number of measurements made.  The following table gives the value of t for various values of N 
and a 95% confidence level.  Note that as N → ∞ the t factor approaches the large sample size 
value of 1.96. 

N 2 3 4 5 6 7 8 9 10 15 20 30 ∞ 
t95% 12.71 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.14 2.09 2.04 1.96 

 
5. Often one presents data in terms of its true (rather than sample) mean, µ, and a confidence interval.  

For random data, the true mean lies within the interval, 
t

x
N
σµ = ±  (21) 

where x  and σ are the sample mean (Eq. (18)) and sample standard deviation (Eq. (19)), 
respectively, t is the confidence interval factor (found from the Student t-distribution as in the 
table above), and N is the number of data points. 

6. When reporting the variability in multiple sample experiments, remember that there is still 
uncertainty in individual measurements.  Thus, when reporting results from multiple sample 
experiments, be sure to report the mean and (95%) confidence interval (using Eq. (21)) as well as 
the uncertainty in an individual measurement.   

 
Be Sure To: 
1. Report the uncertainty in an individual measurement as well as the mean and 95% confidence interval 

for multiple sample experiments.  

measurement value 
(e.g., temperature) 

# of measurements 
with a particular 

measurement value 

 

±2σ 
±3σ 

±1σ 

used in most engineering 
situations as a measure of 
the uncertainty 

𝜇 = 100 𝜎, = 400 (𝜎 = 20) 
# xi 

1 99.36 
2 121.02 
3 131.73 
4 119.56 
5 94.31 
6 114.74 
7 78.33 

 
𝑥̅ = 108.44 𝑠, = 342.05		(𝑠 = 18.49) 
𝑡TU% = 2.45 
 
𝜇 = 108.44 ± 2.45W*X.YT

√Z
[ = 108.44± 17.12  (95% CI) 

𝜇 = [91.32, 125.56]  (95% CI) 
 
 

 
±2𝑠0̅ 
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Uncertainty of Least Squares Fits 
 

 
 
How to find the standard error in the fitting parameters? 

In Excel:  Use the LINEST command, e.g., LINEST(B2:B15, A2:A15, TRUE, TRUE) 
Excel output: 

 
 

In Python:   
# Least squares fit, including standard error estimates. 
# Disclaimer:  I’m new to python programming.  There may be a better way to do this.                         
import numpy as np 
import scipy.optimize as opt 
import matplotlib.pyplot as plt 
 
# The data to fit.                                                               
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) 
y = np.array([2, 9, 14, 16, 25, 29, 34, 40, 44, 48, 53, 59, 64, 66]) 
 
# The equation to fit the data to.                                               
def func(x, m, b): 
    return m*x + b    # equation of a line, can specify any function here                                      
 
# Guess initial estimates for the parameters to seed the curve fit.              
p0 = [1, 1]   # [m, b] These are just reasonable guesses.                                                          
popt, pcov = opt.curve_fit(func, x, y, p0) 
 
# Print the fitting parameter values.                                            
print("m = %.3e" % popt[0]) 
print("b = %.3e" % popt[1]) 
 
# Print the uncertainties on the fit parameters.                                 
perr = np.sqrt(np.diag(pcov)) 
print("standard error for m = %.3e" % perr[0]) 
print("standard error for b = %.3e" % perr[1]) 
 
# Plot the data.                                                                 
plt.plot(x, y, color="black", marker="o", linestyle="", label="data") 
 
# Plot the fitting line.                                                         
y_model = func(x, *popt) 
plt.plot(x, y_model, color="red", linestyle="solid", label="Fit: m=%.3e, b=%.3e\ 
" % tuple(popt)) 
plt.xlabel('x') 
plt.ylabel('y') 
plt.legend() 
plt.show() 
 
Python output: 

m = 4.982e+00 
b = 3.543e+00 
standard error for m = 8.845e-02 
standard error for b = 6.765e-01 

 
 

 

x y
0 2
1 9
2 14
3 16
4 25
5 29
6 34
7 40
8 44
9 48

10 53
11 59
12 64
13 66

y = 4.9824x + 3.5429
R² = 0.9962
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What is the uncertainty on the (least squares) curve fit 
slope (m) and intercept (b)? 
 
Answer: 

𝑚± 1.96𝑠a, where sm is the standard error for m 
𝑏 ± 1.96𝑠c, where sb is the standard error for b 

 
 
 

Format: 
fit for m fit for b 
std error for m, sm std error for b, sb 

coeff. of det., R2 std. error for y, sy 
F statistic degrees of freedom 
regression sum of squares residual sum of squares 
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Notes: 
1. What is the difference between histograms, frequency distributions, and probability distributions? 
 

Histograms 
• Plots the number of samples within a specified size bin. 
• Plot changes depending on the bin size. 
• Area under the curve isn’t equal to one. 

 
 
 

 
 

Frequency distribution 
• The fraction of samples in the range (x, x + Dx) is the area 

under the curve in that range, i.e.,  
fraction of samples in the range (x, x + Dx) = ∫ 𝑓(𝑥)𝑑𝑥0Cf0

0  
• Plot is insensitive to the bin size. 
• Area under the curve is equal to one, i.e., 

 ∫ 𝑓(𝑥)𝑑𝑥CD
ED = 1. 

• 𝑓(𝑥', 𝑥' + Δ𝑥') =
*
∆0i

j(0i,0iCf0i)
(

   
 
 

Probability distribution 
• A frequency distribution, but with an infinite number of samples. 
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2. How do you know if your data is normally distributed? 

a. Qualitative comparison of frequency distribution to a normal probability distribution with the same 
mean and standard deviation [not recommended] 

 
 histogram frequency plot / normal probability distribution 
 

b. Normal Q-Q plot (Normal Quantile-Quantile plot)  [qualitative – provides a visual check] 
Quantiles (aka percentiles) are the data values below which a certain proportion of the data fall: 

0.1% of the data have values less than µ – 3s 
2.2% of the data have values less than µ – 2s 
15.8% of the data have values less than µ – 1s 
50% of the data have values less than µ 
84.2% of the data have values less than µ + 1s 
97.8% of the data have values less than µ + 2s 
99.9% of the data have values less than µ + 3s 

 

 
 
 

 
c. Anderson-Darling Goodness-of-Fit Test (quantitative – recommended) 

• Details not presented here – out of scope for this course. 
• Tests if the sample comes from a specified probability distribution, e.g., a normal distribution. 
• Numerically compares the sample distribution to the specified probability distribution. 
• Requires a more advanced knowledge of statistics to apply and understand. 
• There are other, similar quantitative tests of normality, e.g., the Shapiro-Wilks test, the 

Kolmogorov-Smirnov test, and the Skewness-Kurtosis test. 
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Does the data follow a normal distribution?   
 
Where does the data deviate most from a normal 
distribution? 
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d. Example python code to make these various plots and perform the Anderson-Darling test. 

# Tests for data normality. 
# Disclaimer:  I barely know how to program in python.  You can probably do better.   
 
import statsmodels.api as sm 
import scipy.stats as stats 
import numpy as np 
import pylab as plt 
 
# Load the data set from a file (single data entry per line) 
my_data = np.loadtxt("data.txt") 
 
# Report some statistics about the data 
mean = np.mean(my_data) 
stdev = np.std(my_data) 
print("# of data entries=", len(my_data)) 
print("mean = ", mean) 
print("std. dev = ", stdev) 
 
# First plot a histogram of the data. 
Nbins = 8 
plt.figure(1) 
plt.hist(my_data, density=False, bins=Nbins, linewidth=1, edgecolor='black') 
plt.ylabel('Count') 
plt.xlabel('Value') 
 
# Plot a frequency distribution of the data. 
counts, bin_edges = np.histogram(my_data, Nbins, density=True) 
# Plot the counts at the center of the bins. 
bin_centers = np.empty([len(bin_edges)-1]) 
for i in range(len(bin_edges)-1): 
  bin_centers[i] = (bin_edges[i]+bin_edges[i+1])/2 
plt.figure(2) 
plt.plot(bin_centers, counts, color='black', marker='o', linestyle='solid') 
plt.ylabel('Frequency [1/Value]') 
plt.xlabel('Value') 
 
# Include a plot of a normal distribution on top of the frequency distribution. 
x = np.linspace(mean-3*stdev, mean+3*stdev,100) 
plt.plot(x, stats.norm.pdf(x, mean, stdev), color='red', linestyle='solid') 
 
# Create a QQ plot. 

    sm.qqplot(my_data, line='s') 
 

# Check data for normality using the Anderson-Darling test. 
statistic, significance_values, critical_values = stats.anderson(my_data,'norm') 
print("statistic = ", statistic) 
print("critical_values = ", critical_values) 
print("significance_values = ", significance_values) 
 
for i in range(len(critical_values)): 
  if significance_values[i] < 0.05: 
    print("The data is NOT consistent with a normal distribution for the critical value of ", 
critical_values[i]) 
  else: 
    print("The data IS consistent with a normal distribution for the critical value of ", 
critical_values[i]) 
 
plt.show() 
 

Python output (plots shown previously): 
# of data entries= 100 
mean =  99.98454800000003 
std. dev =  19.693678789517616 
statistic =  0.36885781711968946 
critical_values =  [15.  10.   5.   2.5  1. ] 
significance_values =  [0.555 0.632 0.759 0.885 1.053] 
The data IS consistent with a normal distribution for the critical value of  15.0 
The data IS consistent with a normal distribution for the critical value of  10.0 
The data IS consistent with a normal distribution for the critical value of  5.0 
The data IS consistent with a normal distribution for the critical value of  2.5 
The data IS consistent with a normal distribution for the critical value of  1.0 
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