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Why analyze measurement uncertainty?

Types of Measurement Uncertainty

Blunders:

Systematic (or fixed) uncertainty:

Random uncertainty:
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Estimation of Uncertainty

Single Sample Experiments (aka Type B uncertainty)

‘What is the least count for this ruler?

What is the measurement uncertainty using this ruler?

What is the length of the yellow box?

What is the least count for this stopwatch?

What is the measurement uncertainty using this stopwatch?
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Multiple Sample Experiments (aka Type A uncertainty)

or
multiple times
The Normal (aka Gaussian) Probability Distribution:
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Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

# Xi Xi Xi Xi Xi Xi
1 99.36 120.20 80.92 72.20 130.41 86.54
2 121.02 76.56 88.64 95.92 116.38 100.09
3 131.73 93.18 93.32 100.04 113.11 112.06
4 119.56 65.21 98.33 82.72 103.82 128.79
5 9431 105.08 143.42 72.67 102.18 88.30
6 114.74 102.21 116.85 147.12 101.71 99.12
7 78.33 76.47 98.88 104.78 96.41 79.68
X = 108.44 91.27 102.91 96.49 109.15 99.22
s2 = 342.05 377.60 442.04 665.40 135.73 283.68
s = 18.49 19.43 21.02 25.80 11.65 16.84

xbar (using seven samples)

Standard Error = standard deviation of sample means
S = \/iﬁ => sz = 6.99 (based on Trial 1)

e Frequency plot of the trial mean values (X).
e Superimposed normal distribution using:

4 = mean of the trial means

0 =Sz =699
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For typical engineering applications: C/=95% (= £1.960)

%= 1.965; < i < £+1965; (95%CI) or p=%t 1965 =%+ 1.96= (95% CI)

t-distribution factor
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xbar (using sev®en samples)

What happens as the number of measurements increases?
What happens as the sample standard deviation decreases?

What’s the difference between the sample standard deviation and the standard error of the sample mean?
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Uncertainty of Least Squares Fits
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How to find the standard error in the fitting parameters?
In Excel: Use the LINEST command, e.g., LINEST(B2:B15, A2:A15, TRUE, TRUE)

Excel output:

What is the uncertainty on the (least squares) curve fit

slope (m) and intercept (b)?

Answer:
m * 1.96s,,, where su is the standard error for m
b + 1.96s,,, where s» is the standard error for b

fit for b

std error for b, s»

std. error for y, sy

degrees of freedom

residual sum of squares

Format:
4.98241758 3.54285714 fit for m
0.08845073  0.676518 std error for 1, Sm
0.9962324 1.33411149 coeff. of det., R
3173.05351 12 F statistic
5647.57033 21.3582418 regression sum of squares
In Python:

# Least squares fit, including standard error estimates.

# Disclaimer: I'm new to python programming.
import numpy as np

import scipy.optimize as opt

import matplotlib.pyplot as plt

# The data to fit.
X =
y =
# The equation to fit the data to.

def func(x, m, b):
return mkx + b

There may be a better way to do this.

np.array([e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
np.array([2, 9, 14, 16, 25, 29, 34, 40, 44, 48, 53, 59, 64, 66])

# equation of a line, can specify any function here

# Guess initial estimates for the parameters to seed the curve fit.

po = [1, 11
popt, pcov = opt.curve_fit(func, x, y, p@)
# Print the fitting parameter values.
print( % poptl[0])

print( % popt[1])

# Print the uncertainties on the fit parameters.
perr = np.sqrt(np.diag(pcov))
print(
print(

perr[o])
perr[1])

o° of°

# Plot the data.
plt.plot(x, y, color= , marker= , linestyle=
# Plot the fitting line.
y_model = func(x, *popt)
plt.plot(x, y_model, color=
% tuple(popt))
plt.xlabel('x")
plt.ylabel('y") 70
plt.legend()

plt.show() 60

, linestyle= ,

o

Python output: 50
m = 4.982e+00
b = 3.543e+00
standard error for m
standard error for b =

40

8.845e-02
6.765e-01

# [m, bl These are just reasonable guesses.

, label= )

label= \

® data
—— Fit: m=4.982e+00, b=3.543e+00
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Notes:
1.

Histograms

e  Plots the number of samples within a specified size bin.
Plot changes depending on the bin size.
Area under the curve isn’t equal to one.

Frequency distribution
e  The fraction of samples in the range (x, x + Ax) is the area
under the curve in that range, i.e.,

fraction of samples in the range (x, x + Ax) = f;ﬂx fx)dx

Plot is insensitive to the bin size.

Area under the curve is equal to one, i.e.,

[ fGodx = 1.

Qi x; + Ax;) = — LA
|12 dd ] i

Ax; N

Probability distribution

What is the difference between histograms, frequency distributions, and probability distributions?

25
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A frequency distribution, but with an infinite number of samples.
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2. How do you know if your data is normally distributed?
a. Qualitative comparison of frequency distribution to a normal probability distribution with the same
mean and standard deviation [not recommended]

0.025 4
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0.010 1

Frequency [1/Value]

0.005

0.000 1

80 100 40 60 80 100 120 140 160
Value Value

histogram frequency plot / normal probability distribution

b. Normal Q-Q plot (Normal Quantile-Quantile plot) [qualitative — provides a visual check]

Quantiles (aka percentiles) are the data values below which a certain proportion of the data fall:
0.1% of the data have values less than ¢/ — 30
2.2% of the data have values less than ¢/ — 20
15.8% of the data have values less than u— 1o
50% of the data have values less than u
84.2% of the data have values less than 4+ 1o
97.8% of the data have values less than u+ 20
99.9% of the data have values less than p+ 3o

00 01 02 03 04

Does the data follow a normal distribution?

Where does the data deviate most from a normal
distribution?

Sample Quantiles

(values of the data set)

-2 -1 0 1 2
Theoretical Quantiles

(standard deviations from the mean)

¢. Anderson-Darling Goodness-of-Fit Test (quantitative — recommended)

e Details not presented here — out of scope for this course.
Tests if the sample comes from a specified probability distribution, e.g., a normal distribution.
Numerically compares the sample distribution to the specified probability distribution.
Requires a more advanced knowledge of statistics to apply and understand.
There are other, similar quantitative tests of normality, e.g., the Shapiro-Wilks test, the
Kolmogorov-Smirnov test, and the Skewness-Kurtosis test.
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d. Example python code to make these various plots and perform the Anderson-Darling test.
# Tests for data normality.
# Disclaimer: I barely know how to program in python. You can probably do better.

import statsmodels.api as sm
import scipy.stats as stats
import numpy as np

import pylab as plt

# Load the data set from a file (single data entry per line)
my_data = np.loadtxt("data.txt")

# Report some statistics about the data
mean = np.mean(my_data)

stdev = np.std(my_data)

print("# of data entries=", len(my_data))
print("mean = ", mean)

print("std. dev = ", stdev)

# First plot a histogram of the data.

Nbins = 8

plt.figure(1)

plt.hist(my_data, density=False, bins=Nbins, linewidth=1, edgecolor='black')
plt.ylabel('Count"')

plt.xlabel('value')

# Plot a frequency distribution of the data.
counts, bin_edges = np.histogram(my_data, Nbins, density=True)
# Plot the counts at the center of the bins.
bin_centers = np.empty([len(bin_edges)-11)
for i in range(len(bin_edges)-1):
bin_centers[i] = (bin_edges[il+bin_edges[i+1])/2
plt.figure(2)
plt.plot(bin_centers, counts, color='black', marker='o', linestyle='solid')
plt.ylabel('Frequency [1/Valuel')
plt.xlabel('value')

# Include a plot of a normal distribution on top of the frequency distribution.
x = np.linspace(mean-3xstdev, mean+3xstdev,100)
plt.plot(x, stats.norm.pdf(x, mean, stdev), color='red', linestyle='solid')

# Create a QQ plot.
sm.qqplot(my_data, line='s')

# Check data for normality using the Anderson-Darling test.

statistic, significance_values, critical_values = stats.anderson(my_data, 'norm')
print("statistic = ", statistic)

print("critical_values = ", critical_values)

print("significance_values = ", significance_values)

for i in range(len(critical_values)):
if significance_values[i] < 0.05:
print("The data is NOT consistent with a normal distribution for the critical value of ",
critical_values[i])
else:
print("The data IS consistent with a normal distribution for the critical value of ",
critical_values[i])

plt.show()

Python output (plots shown previously):
# of data entries= 100
mean = 99.98454800000003
std. dev = 19.693678789517616
statistic = 0.36885781711968946
critical_values = [15. 10. 5. 2.5 1.1
significance_values = [0.555 0.632 0.759 0.885 1.053]

The data IS consistent with a normal distribution for the critical value of 15.0
The data IS consistent with a normal distribution for the critical value of 10.0
The data IS consistent with a normal distribution for the critical value of 5.0
The data IS consistent with a normal distribution for the critical value of 2.5
The data IS consistent with a normal distribution for the critical value of 1.0
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