
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

solution procedure is consistent. If not, then the laminar flow assumption was incorrect and a
turbulent flow assumption should be made and the problem re-solved.

11.7. Pipe Systems

Pipe flow systems can be classified as being of one of three types:

• Type I: The desired flow rate is specified and the required pressure drop must be determined.
• Type II: The desired pressure drop is specified and the required flow rate must be determined.
• Type III: The desired flow rate and pressure drop are specified and the required pipe diameter must
be determined.

Type I pipe systems are the easiest to solve. Since the flow velocity and diameter are known, calculation
of the major loss coe�cient, and the friction factor in particular, is straightforward. Type II and Type III
problems are more challenging to solve since the friction factor is unknown. These types of pipe systems
usually require iteration to solve.

Notes:

(1) There is no unique iterative scheme that must be used to solve Type II and Type III pipe flow
problems. Di↵erent people may propose di↵erent algorithms. In addition, there is no guarantee
that a particular iterative scheme will converge to a solution.

(2) When using an iterative scheme, choose an initial flow rate or diameter that is reasonable. Don’t
start with an exceedingly small or large value. For example, for a Type II pipe system, choose a
starting flow rate that corresponds to the fully turbulent zone region.

(3) It’s often worthwhile to first assume that a Type II and Type III flow system is operating in the
fully rough zone of the Moody plot. Using this assumption will often avoid the need for iteration.
However, one must verify at the end of the solution that the assumption of fully rough flow was
correct. If not, then an iterative solution should be considered with the fully rough zone conditions
used as a starting point for the iterations.
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A homeowner plans to pump water from a stream in their backyard to water their lawn.  A schematic of the 
pipe system is shown in the figure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Details of the system are given in the following table.  The design flow rate for the system is 2.5*10-4 m3/s.  
 

Item Value 
water density 1000 kg/m3 
water dynamic viscosity 1*10-3 kg/(m.s) 
inlet pipe length 2 m 
inlet pipe diameter 2.5 cm 
inlet pipe material drawn tubing 
hose length two 15.25 m lengths 
hose diameter 1.3 cm 
hose roughness smooth 
pipe inlet loss coefficient 0.8 
inlet pipe-to-pump coupling loss 
coefficient 

0.1 

pump-to-hose coupling loss coefficient 0.2 
hose-to-hose coupling loss coefficient 0.5 
pressure drop across the sprinkler 210 kPa at 2.5*10-4 m3/s flow rate 
sprinkler nozzle exit diameter 4 mm 

 
For the following questions, circle the answer that is most correct. 
 
1. What is the loss coefficient for the sprinkler at design conditions?  Base the sprinkler loss coefficient 

on the velocity just upstream of the sprinkler. 
2. What is the friction factor for the hose? 
3. What is the velocity head, including the kinetic energy correction factor, at the sprinkler exit? 
 
For the next two questions, assume that the loss coefficient for the sprinkler is 100 and the friction 
factor for the hose is 0.01. 
4. What is the total minor head loss in the system? 
5. What is the total major head loss in the system? 
 
For the next question, assume that the velocity head at the sprinkler exit, including the kinetic energy 
correction factor, is 10 m and the total head loss is 10 m. 
6. What is the shaft head required to operate the system at the design flow rate? 
 
For the next question, assume that the shaft head required to operate the system at the design flow 
rate is 100 m. 
7. What power must be supplied to the pump if the pump is 65% efficient? 
 
 

sprinkler 
hose-to-hose coupling 

pump stream 

re-entrant 
pipe inlet 

3 m 

1 m 
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cm diameter garden hose 
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coupling 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1047 2021-12-15



  pipe_02 
 

Page 2 of 3 
 

SOLUTION: 
 
1. The loss coefficient for the sprinkler may be found using the definition of a loss coefficient. 

 (1) 

where 

 (2) 

Using the given parameters, 
  and  Ksprinkler = 118 (3) 

 
2. The friction factor for the hose may be found using the Moody plot.  The Reynolds number for the 

flow in the hose is: 

 (4) 

Using the given parameters, the hose Reynolds number is ReD = 24500.  From the Moody chart and 
using the smooth curve (we’re told to consider the hose to be “smooth”), the friction factor for the hose 
is fhose = 0.0244. 
 

3. The velocity head, including the kinetic energy correction factor, at the sprinkler’s exit is: 

 (5) 

where  

  Þ   (6) 

and 
a = 1 (7) 

since 

  Þ  ReD = 79600 > 2300 Þ Turbulent flow at the exit! (8) 

Thus,  

 (9) 

 
4. The total minor head loss for the system includes minor losses at the pipe inlet, the pump couplings, 

the hose coupling, and the sprinkler. 

 (10) 

Using the given parameters, 
HL,minor = 21.5 m 
 

5. The total major head loss for the system includes the major losses in the inlet pipe and the hoses. 

 (11) 

HL,major = 10.4 m 
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6. The required shaft head may be found by applying the Extended Bernoulli Equation from the free 
surface of the stream to the outlet of the sprinkler. 

 (12) 

 (13) 

where 
p1 = p2 = patm (14) 

 (15) 

 (16) 

HL = HL,minor + HL,major (17) 
Using the given parameters, HS = 55.1 m. 
 

7. The power that must be supplied to the pump with the given efficiency is: 

 (18) 

where, using the given parameters, 
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It rains during the construction of a building and water fills a recently excavated pit to a depth 0.5 m.  In 
order to continue construction, the water must first be pumped out of the pit.  A hose with a length of 50 m, 
a diameter of 2.5*10-2m, and a surface roughness of 5.0*10-5m is attached to a pump.   Note that the 
kinematic viscosity of the water is 1.005*10-6 m2/s and the density is 1000 kg/m3. 
 
a. If the pump is placed at the pit’s surface (figure A), what is the maximum depth of the pit, H, for which 

water can be pumped out at a velocity of 1 m/s without causing cavitation in the pipe?  The vapor 
pressure of water for the current temperature is 2.337 kPa (abs) and atmospheric pressure is 101 kPa 
(abs). 

b. If the pump is placed at the bottom of the pit (figure B), what is the maximum depth of the pit, H, for 
which water can be pumped out at a velocity of 1 m/s?  Assume that the pump supplies a power of 200 
W to the fluid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

 (1) 
2 2
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where, 
p1 = patm, 
p2 = pv   (point 2 is located just before the pump; the lowest pressure that can be reached is vapor 

pressure), 
z1 = h, 
z2 = H = ?, 

, 
!"! = !, 
a2 » 1  (assuming turbulent flow), 
HS,1®2 = 0  (there’s no pump between points 1 and 2), 
$",$! = ∑ &% &

'!"
!(% = '&)*+,- +&)./,-) &

'"
!(. (2) 

 
Now determine the flow Reynolds number, 

  Þ  turbulent flow assumption is justified! (2) 

Also determine the relative roughness of the pipe, 

 (3) 

Use the Moody chart to determine the pipe’s friction factor, 
Þ f = 0.0289 (4) 
 

The major loss coefficient, Kmajor  = f(L/D) is, 
&)./,- = 57.7. 

Since the major loss coefficient is so large, it’s reasonable to neglect the minor loss coefficients.   
 
Substituting into the EBE and simplifying, 

0#
1( +

&"
!( +$ = 0$%&

1( + ℎ − &)./,- &
"

!(, (6) 

$ = 0$%&'(#
1( + ℎ − /1 + &)./,-1 &

"

!(. (7) 
Using the given parameters, 

patm = 101*103 Pa (abs), 
pv = 2.337*103 Pa (abs), 
ρ = 1000 kg/m3, 
g = 9.81 m/s2, 
h = 0.5 m, 
Kmajor = 57.7, 
V = 1 m/s, 
=> H = 7.57 m. 

The height is short because we’re relying on atmospheric pressure to push the water up through the hose. 
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Now consider the case when the pump is in the pit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

 (8) 

where, 
p1 = patm, 
p2 = patm  (flow exits to the atmosphere), 
z1 = h, 
z2 = H = ?, 

, 
!"! = !, 
a2 » 1  (turbulent flow, as before), 
$2,$! = 3

4̇(   (there’s a pump between points 1 and 2), 

$",$! = ∑ &% &
'!"
!(% = &)./,- &

'"
!(   (neglecting minor losses, as before) (9) 

 
Substitute and solve for the height, 

0$%&
1( + &"

!( +$ = 0$%&
1( + ℎ − &)./,- &

"

!( +
3
4̇(, (10) 

$ = ℎ − '1 + &)./,-) &
"

!( +
3
4̇(. (11) 

 
Using the given values, 

h = 0.5 m, 
Kmajor = 57.7, 
V = 1 m/s, 
g = 9.81 m/s2, 
P = 200 W, 
=>  2̇ = 4! 67"

8 = 0.491 kg/s, 
=>  H = 39.0 m. 

The height in part (b) is much higher than the height in part (a) because in part (b) the pump is used to 
increase the pressure beyond atmospheric pressure, which pushes the fluid up the hose. 
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Following is python code used to perform the calculations. 
# pipe_03.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 9.81 # m/s^2; gravitational acceleration 
rho = 1000 # kg/m^3; water density 
nu = 1.005e-6  # m^2/s; water kinematic viscosity 
h = 0.5  # m; water free surface height 
V = 1 # m/s; average flow speed 
L = 50 # m; hose length 
D = 2.5e-2  # m; hose diameter 
e = 5.0e-5  # m; hose roughness 
patm = 101e3  # Pa; atmospheric pressure 
pv = 2.337e3  # Pa; vapor pressure 
P = 200 # W; pump power 
 
# Calculate the Reynolds number. 
Re = V*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*(L/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the height in part (A). 
H = (patm-pv)/rho/g + h - (1 + K_major)*(V**2)/2/g 
print("H = %.3e m" % H) 
 
# Calculate the mass flow rate. 
mdot = rho*V*np.pi*D*D/4 
print("mdot = %.3e kg/s" % mdot) 
 
# Now calculate the height in part (B). 
H = h - (1 + K_major)*(V**2)/2/g + P/mdot/g 
print("H = %.3e m" % H) 
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Determine the power, in kW, extracted by the turbine in the system shown below.  The pipe entrance is 
sharp-edged and the volumetric flow rate is 0.004 m3/s.  The density of water is 998 kg/m3 and the 
kinematic viscosity is 1.005*10-6 m2/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !"# + #
$%!
&# + $%& = ! !"# + #

$%!
&# + $%' −((,'& +(*,'&, (1) 

where, 
p1 = p2 = patm, 
)*' ≈ 0, 
)*& = +

,-! .⁄ , (2) 

$& − $' = −(, (3) 

((,'& = ∑ .0 $
%"!
&#0 = /.123456	89:6; +.<4:<6 +.=4>?50 $

%!!
&#, (4) 

(*,'& = @
Ȧ#. (5) 

Substitute and solve for the power, 

#& $
%!!

&# +( = −/.123456	89:6; +.<4:<6 +.=4>?50 $
%!!
&# +

@
Ȧ#, (6) 

1 = 2̇4 5( + /#& +.123456	89:6; +.<4:<6 +.=4>?50 $
%!!
&#6. (7) 

Using the given data, 
ρ = 998 kg/m3   and   ν = 1.005*10-6 m2/s, 
D = 0.05 m, 
L = 125 m, 
Q = 0.004 m3/s  =>  2̇ = 78=3.992 kg/s  and )*& = 2.037 m/s, (8) 
g = 9.81 m/s2, 
H = 40 m, 
Ksquare inlet = 0.5  (from minor loss table), 
Kvalve = 10  (from minor loss table), 
ϵ = 0.26*10-3 m (cast iron pipe)  =>  ϵ/D = 0.0052, 
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Re- = $%!-
C = 101,400  (turbulent flow => α2 ≈ 1), (9) 

f = 0.0316  (from Moody plot or Colebrook Formula), 
Kmajor = f(L/D) = 79.0  (The inlet loss coefficient is much smaller than the valve and major loss 

coefficients and, thus, could be reasonably neglected.) 
=>  P = 2.32 kW.  This is the power extracted by the turbine. 

 
Following is a python code used to perform the calculations. 

# pipe_04.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 9.81 # m/s^2; gravitational acceleration 
rho = 998 # kg/m^3; water density 
nu = 1.005e-6  # m^2/s; water kinematic viscosity 
H = 40  # m; water free surface height 
Q = 0.004 # m^3/s; volumetric flow rate 
L = 125 # m; pipe length 
D = 0.05  # m; pipe diameter 
e = 0.26e-3  # m; pipe roughness (cast iron) 
K_inlet = 0.5  # square-edged pipe inlet 
K_valve = 10  # fully open globe valve 
alpha2 = 1  # kinetic energy correction factor 
 
# Calculate the mass flow rate. 
mdot = rho*Q 
print("mdot = %.3e kg/s" % mdot) 
 
# Calculate the average flow speed. 
V2 = Q/(np.pi/4*D*D) 
print("V2 = %.3e m/s" % V2) 
 
# Calculate the Reynolds number. 
Re = V2*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*(L/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the power extracted from the turbine. 
P = mdot*g*(H + (alpha2 + K_inlet + K_valve + K_major)*(V2**2)/2/g) 
print("P = %.3e kW" % (P/1000)) 
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For straightening and smoothing an air flow in a 50 cm diameter duct, the duct is packed with a 
“honeycomb” of 30 cm long, 4 mm diameter thin straws.  The inlet flow is air moving at an average 
velocity of 6 m/s.  Estimate the pressure drop across the honeycomb.  The density of the air is 1.2 kg/m3 
and the kinematic viscosity is 1.5e-5 m2/s.   You may neglect inlet and outlet minor losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli’s Equation from point 1 to point 2. 
 
 
 
 
 
 
 
 
 
 

 

 (1) 

where 

  (This is what we’re trying to find.) (2) 

 (3) 

 (4) 

  (There is no shaft work between points 1 and 2.) (5) 

  (where the subscript “S” refers to the conditions in the straw) (6) 

Note that minor losses have been neglected. 
 

Substitute and re-arrange. 

 (7) 
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Now determine the average flow velocity in the straw, .  Note that the flow rate through the pipe must be 

the same as the flow rate through all of the straws. 

 (8) 

where the number of straws, NS, is: 

  Þ   (9) 

and thus: 

 (10) 

 
Now determine the friction factor for the flow through the straw.   First calculate the straw’s Reynolds 
number. 

  Þ  laminar flow in the straws (11) 

Þ   (12) 

 
Substitute Eqn. (12) into Eqn. (7) and solve for the pressure drop. using the given data. 

  (LS = 0.30 m; r = 1.2 kg/m3) (13) 
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A train travels through a tunnel as shown in the figure.  The train and tunnel are both circular in cross 
section.  The tunnel has a diameter of D = 3 m, a total length of L = 2000 m, and walls comprised of 
concrete.  The clearance between the train and the tunnel wall is small so that it may be assumed that the air 
in front of the train is pushed through the tunnel with the same speed as the train, V = 20 m/s.   
 
1. Determine the pressure difference between the front and rear of the train when the train is a distance, x, 

from the tunnel entrance. 
2. Determine the power, P, required to produce the air flow in the tunnel when the train is a distance, x, 

from the tunnel entrance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from 1 to 2 and from 3 to 4 to obtain the pressures on the front and 
back faces of the train, 

! !"# + #
$%!
&# + $%& = ! !"# + #

$%!
&# + $%' −((,'& +(*,'&, (1) 

! !"# + #
$%!
&# + $%+ = ! !"# + #

$%!
&# + $%, −((,,+ +(*,,+, (2) 

where, 
p1 = p3 = patm, (3) 
)*' = )*+ = 0, (4) 
)*& = )*, = )   (same speed as the train), (5) 
#& ≈ #, ≈ 1  (turbulent flow, ReD = VD/ν = (20 m/s)(3 m)/(1.5*10-5 m2/s) = 4.00*106), (6) 
$' ≈ $& ≈ $, ≈ $+  (the train is moving through air so the elevation differences are negligible), (7) 
((,'& = .-,'& !.-%

$%!!
&#   (neglecting minor losses since the tunnel is long), (8) 

((,,+ = .-,,+ !(/.- %
$%"!
&#   (neglecting minor losses since the tunnel is long), (9) 

(*,'& = (*,,+ = 0   (no fluid machinery),  (10) 
 
Substitute and solve for the pressures on the front and back faces of the train. 

!!
"# +

$!
&# =

!#$%
"# − .-,'& !.-%

$!
&#  =>  !!/!#$%"# = − /1 + .- !.-%0

$!
&#, (11) 

!#$%
"# = !"

"# +
$!
&# − .-,,+ !

(/.
- %

$!
&#  =>  !"/!#$%"# = −/1 − .- !(/.- %0

$!
&#, (12) 
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Note that the friction factor will be the same along both paths.  Subtract Eq. (11) from Eq. (12), 
!"/!!
"# = .- !(-%

$!
&#  =>  1, − 1& = .- !(-%

'
&2)

&. (13) 
 
Find the friction factor from the Moody plot or the Colebrook Formula.  The Reynolds number was 
calculated previously in Eq. (6).  The relative roughness is, 

ϵ/D = (1.7*10-3 m)/(3 m) = 5.67*10-4    (the wall material is concrete), (14) 
=>  fD = 0.0173. 

 
Using the given and previously calculated values,  

ρ = 1.23 kg/m3, 
L = 2000 m, 
D = 3 m, 
V = 20 m/s, 
=>  p3 – p2 = 2.84 kPa. 

Thus, there is a net pressure force acting on the train to resist its motion.  The force is, 
3 = (1, − 1&) 0-

!

+ . (15) 
The power required to overcome this force at the given speed is, 

6 = 3) = (1, − 1&) 0-
!

+ ). (16) 
Using the given and previously calculated values, 

F = 20.1 kN, 
P = 402 kW. 

 
The following python code was used to perform the calculations. 

# pipe_08.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 9.81 # m/s^2; gravitational acceleration 
rho = 1.23 # kg/m^3; air density 
nu = 1.5e-5  # m^2/s; air kinematic viscosity 
V = 20 # m/s; train speed 
L = 2000 # m; tunnel length 
D = 3  # m; tunnel diameter 
e = 1.7e-3  # m; roughness of concrete 
 
# Calculate the Reynolds number. 
Re = V*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Determine the pressure difference. 
Delta_p = f*(L/D)*rho*(V**2)/2 
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print("Delta p = %.3e kPa" % (Delta_p/1000)) 
 
# Determine the pressure force on the train. 
F = Delta_p*np.pi/4*D**2 
print("F = %.3e kN" % (F/1000)) 
 
# Determine the power required to overcome the pressure force at this speed. 
P = F*V 
print("P = %.3e kW" % (P/1000)) 
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Gasoline at 20 °C is being siphoned from a tank through a rubber hose having an inside diameter of 25 mm.  
The roughness for the hose is 0.01 mm.   
1. What is the volumetric flow rate of the gasoline through the hose? 
2. What is the minimum pressure in the hose and where does it occur? 
You may neglect minor losses.  The kinematic viscosity of gasoline is 4.294e-7 m2/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from points 1 to 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p1 = p3 = patm (2) 

  (surface of a large tank) (3) 
   (a3 » 1, assuming turbulent flow in the hose) (4) 

 
z1 – z3 = 3.5 m (5) 

2 2

3 1
2 2 L S

p V p Vz z H H
g g g g

a a
r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷ç ÷ ç ÷

è ø è ø

1 0V »

3 ?V =

discharge into atmosphere 

1.5 m 

1.5 m 

1 m 
5 m 

gasoline, 
SG=0.6 

1 

3 

2 

Assume the bend in the hose is circular 
and that the half circumference is 1.5 m. 

discharge into atmosphere 

1.5 m 

1.5 m 

1 m 
5 m 

gasoline, 
SG=0.6 

radius = circumference/(2p) = (2*1.5 m)/(2p) = 0.48 
m 
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HS = 0 (6) 

   (Neglecting minor losses.) (7) 

where f may be found from the Moody diagram.  The relative roughness is 

 (8) 

Assuming fully turbulent flow so that f is not a function of the Reynolds number, the Moody diagram 
gives, f = 0.016. 
 

Substitute into Eq. (1) and solve for . 

 (9) 

 (10) 

Using the given data, 
g = 9.81 m/s2 
z1 – z3 = 3.5 m 
f = 0.016 
L = 1 m + 1.5 m + 1.5 m + 5 m = 9 m 
D = 0.025 m 
Þ   

Check the Reynolds number to verify the fully turbulent assumption. 

 (11) 

The given relative roughness and this Reynolds number puts the flow in the fully turbulent range so the 
assumptions made in the problem are consistent. 
 
The flow rate is given by, 

Þ  Q = 1.57*10-3 m3/s (12) 

 
 

The minimum pressure occurs near point 2 in the figure shown previously.  Apply the Extended Bernoulli 
Equation from points 2 to 3. 

 (13) 

where 
p2 = ? 

p3 = patm  (14) 
  (a2 » a3 » 1 (15) 

z2 – z3 = 0.48 m + 5 m = 5.48 m (16) 
HS = 0 (17) 

 (18) 

where f = 0.016 was found previously. 
 

Substitute into Eq. (13) and solve for p2. 

2
3

2L
VLH f

D g
æ ö= ç ÷
è ø

40.01 mm 4*10
25 mmD

e -= =

3V

( )
2
3

1 31
2
V Lf z z
g D
é ùæ ö+ = -ç ÷ê úè øë û

( )1 3
3

2

1

g z z
V

Lf
D

-
=

æ ö+ ç ÷
è ø

3 3.2 m sV =

( )( )
( )

53
7 2

3.2 m s 0.025 m
Re 1.9*10

4.294*10  m s
D

V D
n -

= = =

( ) ( )22

3
0.025 m

3.2 m s
4 4
DQ V

pp
= =

2 2

3 2
2 2 L S

p V p Vz z H H
g g g g

a a
r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷ç ÷ ç ÷

è ø è ø

2 3V V=

2
3

2L
VLH f

D g
æ ö= ç ÷
è ø

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 1062 2021-12-15



  pipe_09 

Page 3 of 3 

 (19) 

Using the given data, 
p3 = 101 kPa (abs) 
r = 0.6(1000 kg/m3) = 600 kg/m3 
g = 9.81 m/s2 
z3 – z2 = -5.48 m 
f = 0.016 
L = (1.5 m)/2 + 5 m = 5.75 m 
D = 0.025 m 

 
Þ  p2 = 80.0 kPa (abs) 
 

 
 
 

( ) 21
2 3 3 2 32

Lp p g z z f V
D

r ræ ö= + - + ç ÷
è ø

3 3.2 m sV =
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Water flows from a container as shown in the figure.  Determine the loss coefficient needed in the valve if 
the water is to “bubble up” a distance h above the outlet pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !"# + #
$%!
&# + $%& = ! !"# + #

$%!
&# + $%' −((,'& +(*,'&, (1) 

where, 
p1 = p2 = patm, (2) 
)*' ≈ 0, (3) 
)*& = ?, (4) 
α& ≈ 1 (assume turbulent flow), (5) 
$' = ('  and  $& = (&   (6) 
((,'& = ∑ 0+ $

%"!
&#+ = 10,-./0 + 20/.123 +045.4/ +0657283 $

%!!
&#, (7) 

(*,'& = 0. (8) 
Substitute and solve for the valve loss coefficient, 

$%!!
&# +(& 	= (' − 10,-./0 + 20/.123 +045.4/ +0657283 $

%!!
&#, (9) 

L1 

L2 

H1 

H2 

h 

H1= 45 in 
L1 = 18 in 
L2 = 32 in 
H2 = 2 in 
h = 3 in 
 
The pipe is ½ in diameter 
galvanized iron pipe with threaded 
fittings. 

rounded entrance 

L1 

L2 

H1 

H2 

h 

1 

3 

2 
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045.4/ = &9(;#<;!)

$%!!
− 1 − 0,-./0 − 20/.123 −065728. (10) 

The major loss coefficient is, 
065728 = 5 !(#>(!>;!? %, (11) 

where the friction factor is found using the Moody plot or the Colebrook formula using, 
Re? = $%!?

@ , (12) 
and the relative roughness ϵ/D. 
 
The velocity in the pipe (and at location 2) can be found by applying Bernoulli’s equation from point 2 to 
point 3, 

! !"# +
$%!
&# + $%A = ! !"# +

$%!
&# + $%&, (13) 

where, 
p3 = patm, 
)*A ≈ 0, 
$A = (& + ℎ. 

Substitute and solve for the average velocity at 2, 
)*& = 92:ℎ. (14) 

Note that the “ordinary” Bernoulli’s equation was used from 2 to 3 since these points are outside the pipe. 
 
Using the given parameters, 

g = 32.2 ft/s2, 
ν = 1.21*10-5 ft2/s, 
H1 = 45 in. = 3.75 ft, 
H2 = 2 in. = 0.167 ft, 
h = 3 in. = 0.25 ft, 
L1 = 18 in. = 1.5 ft, 
L2 = 32 in. = 2.67 ft, 
D = 0.5 in. = 0.0417 ft, 
ϵ  = 0.0005 ft  (galvanized iron pipe)  =>  ϵ/D = 0.0120, 
Kinlet = 0.05  (rounded inlet; from minor loss table), 
Kelbow = 1.5  (90 deg threaded elbow; from minor loss table). 
=>  )*& = 4.012 ft/s, 
=> ReD = 13,820   (turbulent flow assumption is ok!) 
=>  f = 0.04387, 
=>  Kmajor = 4.562, 
=>  Kvalve = 5.72. 

 
The following python code was used to perform the computations. 

# pipe_12.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 32.2 # ft/s^2; gravitational acceleration 
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nu = 1.21e-5  # ft^2/s; water kinematic viscosity 
H1 = 45/12  # ft; tank free surface height 
H2 = 2/12  # ft; exit pipe height 
h = 3/12  # ft; fountain height 
L1 = 18/12 # ft; vertical pipe length 
L2 = 32/12 # ft; horizontal pipe length 
D = 0.5/12  # ft; pipe diameter 
e = 0.0005  # ft; pipe roughness (galvanized iron) 
K_inlet = 0.05  # rounded pipe inlet 
K_elbow = 1.5  # 90 deg threaded elbow 
 
# Print the lengths in feet. 
print("H1 = %.3e ft, H2 = %.3e ft, h = %.3e ft, L1 = %.3e ft, L2 = %.3e ft, D = %.3e 
ft" % (H1, H2, h, L1, L2, D)) 
 
# Calculate the average velocity in the pipe. 
V2 = np.sqrt(2*g*h) 
print("V2 = %.3e ft/s" % V2) 
 
# Calculate the Reynolds number. 
Re = V2*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*((L1+L2+H2)/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the valve loss coefficient. 
K_valve = 2*g*(H1-H2)/V2/V2 - 1 - K_inlet - 2*K_elbow - K_major 
print("K_valve = %.3e" % K_valve) 
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According to an appliance manufacturer, the 4 in diameter 
galvanized iron vent on a clothes dryer is not to contain more than 
20 ft of pipe and four 90° elbows.  Under these conditions, determine 
the air flow rate if the gage pressure within the dryer is 1.04 psf.  
You may assume the following: 
 

kinematic viscosity of air:  1.79e-4 ft2/s 
density of air:  2.20e-3 slugs/ft3 
K90° bend = 1.5 
Kentrance = 0.5 

 
 

 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2 as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 

 (1) 

where 
p2 = 0 (gage)  and  p1 = 1.04 psfg 

  (Assume turbulent flow so that a2 » 1.) 
  (The air in the dryer is relatively stagnant compared to the outflowing air.) 

z2 – z1 » 0   
HS = 0 

 (2) 

Note that  since the pipe and exit diameters are the same.  Also, there is no exit loss since point 2 is 
located just at the exit of the pipe.  The air has not undergone any exit losses at this point. 

 
Substitute and simplify. 

 (3) 

It’s given that 
L = 20 ft 
D = 4 in. = 0.33 ft 
Kelbow = 1.5 
Kentrance = 0.5 
p1,g = 1.04 lbf/ft2 
r = 2.20*10-3 slug/ft3 

Using these parameters, Eq. (3) becomes, 
 (4) 
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Note that f is dependent on the Reynolds number and relative roughness, 

 (5) 

where nair = 1.79*10-4 ft2/s and .  The roughness of galvanized iron pipe is e = 0.0005 ft so that the 
relative roughness is, 

 (6) 

 
To solve for  , we must iterate to a solution since f is also a (complex) function of  because of the 
Reynolds number dependence.  One iterative procedure that can be used is given below. 
 

1. Choose a value for f. 
2. Calculate  using Eq. (4). 
3. Calculate ReD using Eq. (5). 
4. Use the Moody diagram with the ReD calculated from Step 3 and the relative roughness given in 

Eq. (6) to find f’. 
5. Is f’ = f?  If so, then the iterations are complete and  is the value found in Step 2.  Otherwise, 

use f’ as the new value for f and go to Step 2. 
 
Using this iterative algorithm and an initial guess of f = 0.025, 
 

1. f = 0.025 
a.  = 10.25 ft/s 
b. ReD = 19,000 
c. f’ = 0.029  (This value is different than our original guess, must continue iterations.) 

2. f = 0.029 
a.  = 10.11 ft/s 
b. ReD = 18,800 
c. f’ = 0.029   (This value matches our initial guess!  Iterations complete!) 

 
 
Note that the flow is turbulent, which is consistent with the assumption that a2 » 1. 
 
The volumetric flow rate may be found using, 

  Þ  Q = 0.882 ft3/s (7) 

where  = 10.11 ft/s and D = 0.33 ft. 
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Water at 10 °C (kinematic viscosity of 1.307*10-6 m2/s) is to flow from a roof-top reservoir to a tanker 
truck through a cast iron pipe (roughness of 0.26 mm) of length 20 m at a flow rate of 0.0020 m3/s.  The 
roof-top tank water level is located 2 m above the tanker truck fluid level.  The system contains a sharp-
edged entrance, six threaded 90° elbows, and a sharp-edged exit.    Determine the required pipe diameter 
for the given flow conditions. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tanker truck 

rooftop reservoir 

2 m 
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SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !"# + #
$%!
&# + $%& = ! !"# + #

$%!
&# + $%' −((,'& +(*,'&, (1) 

where, 
p1 = p2 = patm, 
)*' ≈ )*& ≈ 0, 
$& − $' = −(, (2) 
((,'& = ∑ .+ $

%"!
&#+ = /.,-./01	34516 + 4.15789 +.1:36 +.;/<801 $

%!
&#, (3) 

(*,'& = 0, (4) 
)* = =

>?!/A  (relating the average flow speed in the pipe to the volumetric flow rate). (5) 
 
Substitute and simplify, 

( = /.,-./01	34516 + 4.15789 +.1:36 +.;/<801 $
%!
&#, (6) 

( = /.,-./01	34516 + 4.15789 +.1:36 +.;/<801 B=!
>!?##, (7) 

2A = /.,-./01	34516 + 4.15789 +.1:36 +.;/<801 B=!
>!#C. (8) 

 
The major loss coefficient is, 

.;/<80 = 3 !(?%, (9) 
where the friction factor is a function of the relative roughness and the Reynolds number, 

3 = 3 !D? , Re?%, (10) 
where, 

Re? =	 $
%?
E . (11) 

 
  

tanker truck 
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2 m 
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2 
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Since the velocity, Reynolds number, and relative roughness are all functions of the pipe diameter, Eq. (5) 
cannot be solved explicitly for the pipe diameter.  Instead, an iterative solution must be used.  The 
following algorithm is implemented in the python code at the end of this solution. 

1. Choose a value for the diameter, D. 
2.  Calculate the average pipe speed using Eq. (5). 
3. Calculate the Reynolds number using Eq. (11). 
4. Calculate the relative roughness. 
5. Determine the friction factor using the Colebrook Formula (or use the Moody plot). 
6. Calculate the major loss coefficient using Eq. (9). 
7. Use the EBE (Eq. (8)) to solve for the pipe diameter, D’. 
8. Is D’ equal to D?  If so, then the iterations are complete.  If not, let D = D’ and return to step 2. 

 
The given parameters are, 

ν = 1.307*10-6 m2/s, 
g = 9.81 m/s2, 
H = 2.0 m, 
L = 20 m, 
Q = 0.0020 m3/s, 
ϵ = 0.26 mm (cast iron pipe), 
Kinlet = 0.5 (sharp-edge entrance; from a minor loss table), 
Kelbow = 1.5  (90 deg, threaded elbow; from a minor loss table), 
Kexit = 1. 

 
Running the python code generates the following output, 
Iterating:  D= 4.000e-02 m, Re= 4.871e+04, e/D= 6.500e-03, f= 3.451e-02, K_major= 1.725e+01, D' = 4.497e-02 m 
Iterating:  D= 4.497e-02 m, Re= 4.332e+04, e/D= 5.781e-03, f= 3.364e-02, K_major= 1.496e+01, D' = 4.389e-02 m 
Iterating:  D= 4.389e-02 m, Re= 4.439e+04, e/D= 5.924e-03, f= 3.381e-02, K_major= 1.541e+01, D' = 4.411e-02 m 
Iterating:  D= 4.411e-02 m, Re= 4.417e+04, e/D= 5.895e-03, f= 3.378e-02, K_major= 1.531e+01, D' = 4.406e-02 m 
Final:  D = 4.411e-02 m, Re = 4.417e+04, e/D = 5.895e-03, f = 3.378e-02, D' = 4.406e-02 m 

Thus, the pipe diameter should be D = 4.41 cm. 
 
Following is the python code used for the computations. 

# pipe_11.py 
 
import numpy as np 
 
# Initialize variable values. 
g = 9.81  # m/s^2, gravitational acceleration 
H = 2.0  # m, height difference 
L = 20  # m, pipe length 
Q = 0.0020  # m^3/s, volumetric flow rate 
K_inlet = 0.5  # sharp-edge entrance loss coefficient 
K_elbow = 1.5  # 90 deg threaded elbow loss coefficient 
K_exit = 1.0  # exit loss coefficient 
nu = 1.307e-6  # m^2/s, kinematic viscosity 
e = 0.26e-3  # m, roughness (cast iron pipe) 
 
def Re_fcn(D):  # Calculate the Reynolds number given the diameter 
    return 4*Q/np.pi/nu/D 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
def D_fcn(f, K_major):  # Calculate the diameter from the EBE 
    D = ((K_inlet + 4*K_elbow + K_exit + K_major)*8*Q*Q/np.pi/np.pi/g/H)**(1/4) 
    return D 
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# Initial guess for D and set the iteration tolerance. 
Dprime = 0.04  # m, first guess at the diameter 
Dreldiff = 1  # a large number to start with 
tol = 0.001  # tolerance 
countmax = 1000  # maximum number of iterations before giving up 
 
# Iterate until D and Dprime are nearly equal or we reach the maximum 
# number of iterations. 
count = 0 
while ((Dreldiff > tol) and (count < countmax)): 
    count = count + 1 
    D = Dprime 
    Re = Re_fcn(D) 
    e_D = e/D 
    f = f_Colebrook(Re, e_D) 
    K_major = f*(L/D) 
    Dprime = D_fcn(f, K_major) 
    Dreldiff = np.absolute((D-Dprime)/D)  # find the relative difference 
    print("Iterating:  D= %.3e m," % D, "Re= %.3e," % Re, "e/D= %.3e," % 
e_D,"f= %.3e," % f, "K_major= %.3e," % K_major, "D\' = %.3e m" % Dprime) 
 
 
if (count == countmax): 
    print("Didn't converge to a solution after %d iterations." % countmax) 
else: 
    print("Final:  D = %.3e m," % D, "Re = %.3e," % Re, "e/D = %.3e," % e_D,"f 
= %.3e," % f, "D\' = %.3e m" % Dprime) 
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The tailrace (discharge pipe) of a hydro-electric turbine installation is at an elevation, h, below the water 
level in the reservoir: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The losses in the penstock (the pipe leading to the turbine) and the tailrace are represented by the loss 
coefficient, K, based on the mean velocity, U, in those pipes, which have the same cross-sectional area, A.  
The flow discharges to atmospheric pressure at the exit from the tailrace.  The water density is denoted by 
r and the acceleration due to gravity by g.  Assume turbulent flow conditions. 
 
a. What is the drop in total head across the turbine? 
b. What is the power developed by the turbine assuming that it has an efficiency η? 
c. What is the optimum velocity, Uopt, that will produce the maximum power output from the turbine 

assuming that h, K, A, r, and g are constant? 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from 1 to 2, 

! !"# + #
$%!
&# + $%& = ! !"# + #

$%!
&# + $%' −((,'& +(*,'&, (1) 

where, 
p1 = p2 = patm, (2) 
)*' ≈ 0, (3) 
)*& = -   (assume α2 ≈ 1), (4) 
$& − $' = −ℎ, (5) 

((,'& = ∑ 0+ $
%"!
&#+ = 0 ,!

&#, (6) 

(*,'& = -
".# =

-
",/#. (7)  

 
Substitute and simplify, 

,!
&# − ℎ = −0 ,!

&# +
-

"#,/, (8) 

-
"#,/ = (1 + 0) ,!&# − ℎ. (9) 

penstock 

tailrace 

reservoir 

turbine 

T 

h 

penstock 

tailrace 

reservoir 

turbine 

T 

h 

1 

2 
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Note that since it’s a turbine, we expect the right-hand side of Eq. (9) to be negative.  Thus, the total drop in 
head across the turbine is equal to the absolute value of the right-hand side of Eq. (9). 
 
The power developed by the turbine, assuming an efficiency of η is, 

4 = 567-8 9(1 + 0) ,!&# − ℎ:. (10) 

 
To optimize the power output, take the derivative of Eq. (10) and set it equal to zero, 

0-
0, = 0 = 5678 0

0, 9(1 + 0)
,#
&# − ℎ-:, (11) 

0 = 3(1 + 0) ,!&# − ℎ, (12) 

-1!2 = < &#3
4('67). (13) 
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In the water flow system shown, reservoir B has variable elevation, x.  Determine the water level in 

reservoir B so that no water flows into or out of that reservoir.  The speed in the 12 in. diameter pipe is 10 

ft/s.  Assume the pipes are constructed of cast iron and that the entrances are sharp-edged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOLUTION: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apply the Extended Bernoulli Equation from point 1 to point 2, 

! !"# + #
$%!
&# + $%& = ! !"# + #

$%!
&# + $%' −((,'& +(*,'&, (1) 

where, 

p1 = patm, (2) 

)*' ≈ 0, (3) 

)*& is given, (4) 

$& − $' is given, (5) 

((,'& = ∑ .+ $
%"!
&#+ = /.,-./0 +.123450 $

%!!
&#, (6) 

(*,'& = 0. (7) 

 

The pressure at point 2 can be found using hydrostatics since there is no flow from point 3 to point 2, 

1& = 1678 + 23(5 − $&). (8) 

 

Substitute and solve for x, 
!#$%
"# + (5 − $&) + #& $

%!!
&# + $& =

!#$%
"# + $' − /.,-./0 +.123450 $

%!!
&#, (9) 

5 = $' − /.,-./0 +.12345 + #&0 $
%!!
&#, (10) 

 

  

67 ft 

100 ft 

100 ft 

50 ft 

10 ft/s 

12 in. diam 

6 in. diam 

x 

B 

67 ft 

100 ft 

100 ft 

50 ft 

10 ft/s 

12 in. diam 

6 in. diam 

x 

B 

1 3 

2 
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Using the given parameters, 

z1 = 100 ft, 

Kinlet = 0.5  (sharp-edge inlet; from a minor loss table), 

)*& = 10 ft/s, 

ν = 1.08*10-5 ft2/s, 

g = 32.2 ft/s2, 

D = 12 in. = 1 ft, 

L12 = 100 ft, 

ϵ = 0.00085 ft  (cast iron)  =>  ϵ/D = 0.00085, 

Re9 = )*&9/; = 925,900   (turbulent flow  =>  α2 ≈ 1), 

=>  f =  0.01924  (from the Moody plot or the Colebrook formula), 

=>  Kmajor = f(L12/D) = 1.924, 

=>  x = 94.7 ft. 

 

The following python code was used for the computations. 
# pipe_15.py 
 
import numpy as np 
 
def f_Haaland(Re, e_D):  # Calculate the friction factor using the Haaland formula 
    return (-1.8*np.log10(6.9/Re+(e_D/3.7)**1.11))**-2 
     
def f_Colebrook(Re, e_D):  # Calculate the friction factor using the Colebrook formula 
    fprime = f_Haaland(Re, e_D) 
    freldiff = 1 
    tol = 0.001 
    while (freldiff > tol): 
        f = fprime 
        fprime = (-2.0*np.log10(e_D/3.7 + 2.51/Re/np.sqrt(f)))**-2 
        freldiff = np.absolute((fprime-f)/f) 
    return f 
 
# Initialize variable values. 
g = 32.2 # ft/s^2; gravitational acceleration 
nu = 1.08e-5  # ft^2/s; kinematic viscosity 
z1 = 100  # ft; free surface height 
V2 = 10 # ft/s; flow rate 
L12 = 100 # ft; pipe length 
D = 12/12  # ft; pipe diameter 
e = 0.00085  # ft; pipe roughness (cast iron) 
K_inlet = 0.5  # square-edged pipe inlet 
 
# Calculate the Reynolds number. 
Re = V2*D/nu 
print("Re = %.3e" % Re) 
 
# Calculate the relative roughness. 
e_D = e/D 
print("e/D = %.3e" % e_D) 
 
# Determine the friction factor. 
f = f_Colebrook(Re, e_D) 
print("f = %.3e" % f) 
 
# Calculate the viscous loss coefficient. 
K_major = f*(L12/D) 
print("K_major = %.3e" % K_major) 
 
# Calculate the elevation x. 
x = z1 - (K_inlet + K_major + 1)*(V2**2)/2/g 
print("x = %.3e ft" % x) 
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Consider the process of donating blood.  Blood flows from a vein in which the 
pressure is greater than atmospheric, through a long small-diameter tube, and into a 
plastic bag that is essentially at atmospheric pressure.  Based on fluid mechanics 
principles, estimate the amount of time it takes to donate a pint of blood.  List all 
assumptions and show calculations. 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
First, a few assumptions: 

1. Treat blood as a Newtonian fluid.  Blood is actually slightly non-Newtonian with shear-thinning 
behavior, but we’ll model it as Newtonian here for simplicity.  Assume the density of blood is r = 
1060 kg/m3 and its dynamic viscosity is µ = 3.5 cP = 3.5*10-3 kg/(m.s).  Hence, the kinematic 
viscosity is n = µ/r = 3.30*10-6 m2/s. 

2. Steady flow through the needle and tube.  In fact, the real flow will be pulsatile due to the 
fluctuating pressure in the vein. 

3. Constant pressure in the arm and collection bag.  Again, the real flow will have periodic pressure 
variations in the arm. 

4. The mean arterial pressure in the arm is at 93.3 mm Hg (gage).  In practice, there are two values 
given for blood pressure:  a systolic pressure and a diastolic pressure.  The systolic pressure is the 
pressure when the heart is contracted while the diastolic pressure is when the heart is relaxed.  A 
value of (systolic/diastolic) 120/80 mm Hg (gage) is within the normal range of blood pressures.  
The mean arterial pressure (MAP) is the average pressure over a cardiac cycle and can be 
approximated as:  MAP = pdiastolic + (1/3)*(psystolic – pdiastolic). 

5. The pipe system consists of a needle, plastic tubing, and a plastic collection bag.  A 17 gauge 
(1.07 mm inner diameter) needle diameter is often used for collecting blood.  These needles are 
approximately 2.54 cm (1 in.) in length.  The plastic tubing is assumed to be approximately 2.0 m 
in length with an inner diameter of 3.0 mm. 

6. The flow in the needle and tube is laminar since the diameters are small. 
7. The collection bag is located below the person’s arm.  We’ll assume an elevation difference of 0.5 

m. 
 
Apply the Extended Bernoulli Equation from point 1 (in the vein) to point 2 (just upstream of the tube exit 
leading into the bag), 

, (1) 

where 
p1 = parm = 93.3 mm Hg (gage)  (use the mean arterial pressure in the arm) 
p2 = 0 (gage)  (discharging into a bag that is at atmospheric pressure) 

p
ρg

+α V
2

2g
+ z

⎛
⎝⎜

⎞
⎠⎟ 2

= p
ρg

+α V
2

2g
+ z

⎛
⎝⎜

⎞
⎠⎟ 1
− HL ,1→2 + HS,1→2

 

z2 = 0 2 

z1 = 1 m 
1 

tube (T) 
LT = 2.0 m 
DT = 3.0 mm 

needle (N) 
LN = 25.4 mm 
DN = 1.07 mm (17 gauge) 
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  (blood speed in the vein is small compared to the speed in the needle and tube) 
  (blood speed just before the exit of the tube) 

a2 = aT = 2  (because the tube diameter is small, assume the flow is laminar at the tube exit) 
z1 = 0.5 m  (assume the person’s arm is 0.5 m above the bag) 
z2 = 0  
HS,1→2 = 0  (no fluid machinery in the process) 

 (2) 

(major losses in the needle and tube and a minor loss at the inlet and at the transition from the 
need to the tube)  

 
Note that, 

   and   (3) 

   and    (since the flow is laminar) (4) 

 
Substitute and simplify, 

, (5) 

, (6) 

, (7) 

, (8) 

. (9) 

Using the given data, 
g = 9.81 m/s2 
Kentrance = 0.78 (re-entrant inlet) 
Kexpansion = 0.8  (area ratio = (DN/DT)2 = 0.126) 
DN = 1.07*10-3 m 
aT = 2  (laminar flow at tube exit) 
DT = 3.0*10-3 m 
n = 3.30*10-6 m2/s 
LN = 2.54*10-2 m 
LT = 2.0 m 
pg,arm = rgH = (13.6*1000 kg/m3)(9.81 m/s2)(93.3*10-3 m Hg) = 12.5*103 Pa 
r = 1060 kg/m3 
z1 = 0.5 m 
Þ  A = 1.03*1011 s2/m5, B = 6.07*105 s/m2, C = -1.70 m 
Þ  Q = 2.07*10-6 m3/s  Þ  = 2.31 m/s, = 0.29 m/s Þ ReDN = 748, ReDT = 266 Þ The laminar 
flow assumptions are good ones! 
 
One pint is equivalent to Vcollect = 4.73*10-4 m3, thus the expected time required to collect one pint of 
blood is, 

V1 ≈ 0
V2 =VT

HL ,1→2 =
VN
2

2g
fN

LN
DN

⎛
⎝⎜

⎞
⎠⎟
+ Kentrance + Kexpansion

⎡

⎣
⎢

⎤

⎦
⎥ +

VT
2

2g
fT

LT
DT

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

VN = Q
π
4 DN

2 = 4Q
πDN

2 VT =
Q

π
4 DT

2 =
4Q
πDT

2

fN = 64
ReDN

= 64ν
VNDN

= 16πνDN

Q
fT =

64
ReDT

= 64ν
VTDT

= 16πνDT

Q

αT
VT
2

2g
=

pg,arm
ρg

+ z1
⎛
⎝⎜

⎞
⎠⎟
− VN

2

2g
fN

LN
DN

⎛
⎝⎜

⎞
⎠⎟
+ Kentrance + Kexpansion

⎡

⎣
⎢

⎤

⎦
⎥ −

VT
2
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⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
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⎛
⎝⎜

⎞
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Q
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pg,arm
ρg

+ z1
⎛
⎝⎜

⎞
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DT
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⎞
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Q2 + 128ν
πg
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DN
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DT
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  Þ  T = 229 s = 3.8 min. 

 
In practice, the time required to donate a pint of blood is approximately 8 – 10 minutes, so this prediction, 
although in the right ballpark, is too small when compared to reality.  Two assumptions likely factor into 
this error.  First, we’ve assumed fully developed flow in the needle, which is most likely not the case.  The  
pressure drop in the needle will be larger than what we’ve predicted from our fully developed flow model 
and thus the flow rate will decrease and the predicted donation time will increase.  Secondly, there will be 
additional losses due to the bends in the tubing and, especially, due to the clamp located on the tubing to 
make it easier to stop the flow, if needed.  These additional minor losses aren’t negligible and will 
contribute to make the flow rate smaller. 

 

T = Vcollect
Q
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A hypodermic needle, with an inside diameter of 0.1 mm and a length of 25 mm is used to 
inject saline solution with a dynamic viscosity five times that of water.  The plunger 
diameter is 10 mm and the maximum force that can be exerted by a thumb on the plunger is 
45 N.  Estimate the volume flow rate of saline that can be produced. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
For a viscous, laminar, fully developed flow in a circular pipe (Poiseuille flow), the average velocity is 

 (1) 

and the volumetric flow rate is: 

  (2) 

 
The pressure gradient, assuming fully developed flow in the needle, is: 

 (3) 

where pplunger,gage is: 

 (4) 

 
Using the given data: 

d = 0.1e-3 m 
D = 10e-3 m 
L = 25e-3 m 
F = 45 N 
µ = 5e-3 N×m/s 
Þ  pplunger,gage = 5.73e5 Pa 
Þ  dp/dz = -2.29e7 Pa/m 
Þ  = 1.43 m/s 
Þ  Q = 1.13e-8 m3/s = 11.3 mm3/s 
 

Check the Reynolds number to verify that the laminar flow assumption is ok. 

   (Use r » 1000 kg/m3.) (5) 

Þ  Re = 28.8 < 2300 Þ The laminar flow assumption is justified! 
 
 

2

32
d dpu

dzµ
æ ö= -ç ÷
è ø

2 4

4 128
d d dpQ u

dz
p p

µ
æ ö= = -ç ÷
è ø

atm plunger plunger,gagep p pdp p
dz L L L

- -D
= = =

( )plunger,gage 2

4

Fp
Dp

=

u

Re udr
µ

=
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L 
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The average flow speed in a constant-diameter section of the Alaskan pipeline is 8.27 ft/s.  At the inlet, the 
pressure is 1200 psig and the elevation is 150 ft; at the outlet, the pressure is 50 psig and the elevation is 
375 ft.  Calculate the head loss in this section of pipeline. 
 
 
SOLUTION: 
 
 
 
 
Apply the Extended Bernoulli’s Equation from 1 to 2. 

 (1) 

where 

 (2) 

    (since the flow is fully developed and mass is conserved) (3) 

 (4) 

  (This is what we’re trying to find.) (5) 

  (There is no shaft work between points 1 and 2.) (6) 

Substitute and solve for HL. 

 (7) 

 (8) 

 

2 2

,1 2 ,1 2
2 12 2 L S

p V p Vz z H H
g g g g

a a
r r ® ®

æ ö æ ö
+ + = + + - +ç ÷ ç ÷

è ø è ø

   

p2 − p1

ρg
=

50−1200( )  lbf

in2 ⋅144 in2

ft2

0.9( )
=SGcrude

oil


1.94 slug

ft3
⎛
⎝⎜

⎞
⎠⎟ 32.2 ft

s2( ) = −2940 ft

2 2

2 12 2
V V
g g

a a
æ ö æ ö

=ç ÷ ç ÷
è ø è ø

( )2 1 375 150  ft 225 ftz z- = - =

,1 2 ?LH ® =

,1 2 0SH ® =

( )2 1
,1 2 2 1L

p pH z z
gr®

æ ö-
= - - -ç ÷

è ø

,1 2 2940 225 ft 2720 ftLH ®\ = - =

1 2 
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Consider the pipe system shown below in which water (with a density of 1.0E3 kg/m3 and a dynamic 
viscosity of 1.3E-3 Pa×s) flows from the tank A to tank B.  If the required flow rate is 1.0E-2 m3/s, what is 
the required gage pressure in tank A? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the pipe 
leading into tank B (point 2). 

 (1) 

where 
  and    (given) 

  (large tank)          (Assume turbulent flow.) 
 and    (given) 

  (no fluid machinery between points 1 and 2) 

   

 (2) 

(Note that there are no exit losses at point 2 since no mixing occurs there.) 
 

2 2

,12 ,12
2 1

2 2 L S
p V p Vz z H H
g g g g
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æ ö æ ö
+ + = + + - +ç ÷ ç ÷ç ÷ ç ÷

è ø è ø
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1 0V » 2V V= 2 1a »
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2 2 2 2
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2
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The mean velocity in the pipe is determined from the volumetric flow rate and the pipe area. 

 

Using the given data: 

 

 
The friction factor, f, is determined from the Moody chart using the Reynolds number in the pipe, Re, and 
the relative roughness, e/D. 

  (Turbulent flow assumption ok.) 

 

 
 

Hence, the major loss coefficient for the system is: 

 

 
The minor loss coefficients are found from minor loss tables to be: 

 

 

 

 
Using the given data, the total head loss (from Eqn. (2)) is: 

 

 
 

Re-arranging Eqn. (1) to solve for p1 gives: 
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Now let’s solve the problem using points 2’ and 2’’ as shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the end of the stream at 
the surface of the free jet (point 2’). 

 (3) 

where 
  and    (given) 

  (large tank)   

   (using Bernoulli’s Eqn applied from the end of the pipe to the surface of tank B) 

 

  (Assume turbulent flow.) 

 and    (given) 

  (no fluid machinery between points 1 and 2) 

   

 (4) 

(Note that there are no exit losses from point 2 to point 2’ since the kinetic energy in the stream 
hasn’t been dissipated.) 
 

Using the same data as in the previous solution, except for the velocity at 2’ and the elevation at 2’, 

 
  (Same answer as found previously!)
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pA = pB + 1
2 ρV ′2

2 + ρg z ′2 − z1 + HL,1 ′2( )
= 2.8E5 Pa( ) + 1

2 1.0E3 kg/m3( ) 6.7E0 m/s( )2 + 1.0E3 kg/m3( ) 9.8E0 m/s2( ) 1.4E1 m − 6.0E0 m + 3.0E1 m( )

6.8E5 PaAp =
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threaded elbow 

14 m 15 m 
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threaded elbow 
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pA = ? 
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A 
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Now apply the Extended Bernoulli Equation from the free surface of tank A (point 1) to the surface of the 
tank (point 2’’). 

 (5) 

where 
  and    (given) 

  (large tank)   
   (surface of large tank) 

 and    (given) 

  (no fluid machinery between points 1 and 2) 

   

 (6) 

(Note that the kinetic energy in the stream is dissipated when going from point 2’ to point 2’’.  
Thus, the correct velocity to use in the velocity head term is the velocity at 2’.) 
 

Using the same data as in the previous solution, except for the velocity at 2’ and the elevation at 2’, 

 

  (Same answer as found previously!) 
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⎠
⎟
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⎠
⎟
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⎠⎟
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pA = pB + ρg z ′′2 − z1 + HL,1 ′′2( )
= 2.8E5 Pa( ) + 1.0E3 kg/m3( ) 9.8E0 m/s2( ) 1.4E1 m − 6.0E0 m + 3.2E1 m( )

6.8E5 PaAp =
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You purchase a cottage at a lake and need to install a pump to feed water to the house. You plan to pump 
water at night to fill a storage tank you’ve installed next to the cottage. The pipes and fittings you have 
chosen to use for the installation are listed in the table below.  
a. What is the minimum head rise across a pump that is capable of providing a flow rate of 18.93 liters 

per minute (= 5 gpm) of water to the tank?  
b. What power should be supplied to the pump assuming the pump efficiency is 65%. 
 

 

 

 

 

 

System Component Amount 
straight, smooth plastic pipe, 5.08 cm (= 2 in.) diameter 28.96 m (=95 ft) 

re-entrant inlet 1 
regular 90º flanged elbow 10 

union 8 
fully open globe valve 1 
fully open gate valve 4 

 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from point 1 to point 2. 

 (1) 

where 
 (2) 

 (3) 

   and  a2 » 1 (assuming turbulent flow) (4) 

z2 – z1 = 15.24 m (5) 

2 2

,1 2 ,1 2
2 12 2 L S

p V p Vz z H H
g g g g

a a
r r ® ®

æ ö æ ö
+ + = + + - +ç ÷ ç ÷

è ø è ø

2 1 atmp p p= =

1 0V »

22
4

P D

QV V
p

= =

pump 
15.24 m 
(= 50 ft) 

 

3.05 m 
(= 10 ft) 

 

0.61 m 
(= 2 ft) 

 

tank 

lake 

1 

2 

pump 
15.24 m 
(= 50 ft) 

3.05 m 
(= 10 ft) 

0.61 m 
(= 2 ft) 

tank 

lake 

z 
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 (6) 

(where ) 

 (7) 
 
Substitute into the Extended Bernoulli Equation and re-arrange. 

 (8) 

 (9) 

 (10) 

 
Use the given data to determine HS,1®2. 

z2 – z1 = 15.24 m 
L = 28.96 m  
D = 5.08 cm = 5.08e-2 m 
Kinlet = 0.8 
Kelbow = 0.3 
Kthreaded union = 0.06 
Kglobe valve = 10 
Kgate valve = 0.15 
Q = 18.93 L/min = 3.154e-4 m3/s  (= 5 gpm) 
g = 9.81 m/s2 (= 32.2 ft/s2) 

The friction factor is found using the Moody chart for a smooth pipe and a Reynolds number of: 

   

(The turbulent flow assumption is valid!) (11) 
Þ  f » 0.033  (from the Moody diagram) (12) 

  (= 50.14 ft) (13) 
Note that the head loss is much smaller than the elevation head. 

 
The power is related to the shaft head by: 

 (14) 

 (15) 
 

Using the given data (r = 1000 kg/m3): 
(= 0.06 hp) (16) 

Since the efficiency is h = 65%, the power that must be supplied to the pump is: 

  Þ    (= 0.1 hp) (17) 

 

2 2 2 2 2 2 2
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4 3.154e-4 m s4Re 7900
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P
D

V D QD Q
Dpn p nn p

= = = = »

,1 2 15.28 mSH ®\ =

   
HS ,1→2 =

WS ,1→2

mg
=
WS ,1→2

ρQg

   
∴ WS ,1→2 = ρQgHS ,1→2

   
∴ WS ,1→2 = 47.3 W

   
∴ Wsupply =

WS ,1→2

η    
∴ Wsupply = 72.7 W
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A hot tub sits on a deck as shown in the figure below.  A homeowner plans to fill the hot tub with water from a 1.91 
cm (0.75 in.) diameter, 7.62 m (25 ft) length of old garden hose attached to an outdoor spigot (aka faucet) located 
underneath the deck.  The hose has an internal roughness of 0.5 mm (1.97*10-2 in.) and the gage water pressure just 
upstream of the spigot valve is 379 kPa (55 psig).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The minor losses due to the bends in the hose are much smaller than the minor loss due to the valve, which has a 
loss coefficient of 2.  
 
Determine the volumetric flow rate of water into the hot tub.  Clearly state and justify all significant assumptions. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apply the Extended Bernoulli Equation from 1 to 2. 

 (1) 

where 
p1,g = 3.79*103 Pa  and  p2,g = 0  (2) 

  and   (3) 
z2 – z1 = Dz = 3.05 m (4) 

     (5) 

 (6) 
  

2 2

2 1
2 2 L S

p V p Vz z H H
g g g g

a a
r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷ç ÷ ç ÷

è ø è ø

1 hV V= 2 0V »

2

valve exit bends 2
h

L
VLH f K K K

D g
é ùæ ö= + + +ç ÷ê úè øë û
0SH =

spigot 
and valve 

hot tub 

hose 

1 m (3.28 ft) 

3.05 m (10 ft) 

0.61 m (2 ft) 

water density = 1000 kg/m3 (62.4 lbm/ft3) 
water kinematic viscosity = 1.00*10-6 m2/s 

(1.05*10-5 ft2/s) 

spigot 
and valve 

hot tub 

hose 

1 m (3.28 ft) 

3.05 m (10 ft) 

0.61 m (2 ft) 
1 

2 
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Assume the flow in the hose is fully turbulent so that, 

, (7) 
and the friction factor is solely a function of the relative roughness, 

 (8) 

Using the Moody diagram, the friction factor is, 
 (9) 

 
Substitute into Eq. (1) and solve for the average water speed in the hose. 

 (10) 

Note that the major loss coefficient of, 

, (11) 

is larger than the valve and exit losses (recall that from the problem statement, Kbends <<  Kvalve, and thus the bend 
losses may be neglected), with Kvalve/Kmajor = 0.09 and Kexit/Kmajor = 0.05.   We should retain these minor losses since 
they are not small enough to be neglected. 
 
Solving Eq. (10) for the hose average velocity gives, 
 

  Þ   (12) 

The volumetric flow rate is, 
  Þ  Q = 1.6*10-3 m3/s (13) 

 
Verify that the flow is indeed in the fully turbulent zone. 

 (14) 

This value of the Reynolds number is in the fully turbulent zone, so the assumption of fully turbulent flow was a 
good one. 
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Consider the pipe system shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Determine the power the pump must provide to the water to maintain the given conditions. 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1) 

Re-arrange to solve for the shaft head term, 

 (2) 

where 
g = 9.81 m/s2  and  r = 1000 kg/m3 (3) 
p1 = 100 kPa (abs)  and   p2 = 200 kPa (abs) (4) 

  and   (5) 

z1 = 1 m  and  z2 = 2 m (6) 

 (7) 

  

2 2
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2 2

2 1 2 1
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a a
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2
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VLH f K

D g
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100 kPa (abs) 

200 kPa (abs) 

2 m 
1 m 

avg. water velocity  
in pipe = 2.5 m/s 

total pipe length = 50 m 
pipe diameter = 0.02 m 
pipe roughness = 2.0*10-5 m 
total minor loss coefficient = 5 

pump 

100 kPa (abs) 

200 kPa (abs) 

2 m 
1 m 

2.5 m/s 

total pipe length = 50 m 
pipe diameter = 0.02 m 
pipe roughness = 2.0*10-5 m 
total minor loss coefficient = 5 

pump 

2 

1 

g 

water density = 1000 kg/m3 
water kinematic viscosity = 

1.0*10-6 m2/s 
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and 
L = 50 m  and  D = 0.02 m (8) 
Kminor = 5 (9) 

 (10) 

 (11) 

Use the Moody diagram to find the friction factor for this Reynolds number and relative roughness, 
f = 0.024 (12) 
 

Using the given data, 
HS = 31.7 m (13) 
 

The power may be found from the shaft head term using, 

 (14) 

Thus, 

 (15) 

 
 
 

 
 

( ) ( )52.0*10  m 0.02 m 0.001e D -= =

( )( )
( )

pipe
6 2

2.5 m s 0.02 m
Re 50,000

1.0*10  m s

V D
n -

= = =

2
pipe 4S S SW QgH V D gHpr r= =!

244 WSW =!
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Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

11.7.1. Serial Pipe Systems

Serial pipe systems have multiple pipes that have the same inlet conditions and the same outlet conditions
(Figure 11.12). For these systems one simply applies the EBE separately for each pipe.

Figure 11.12. An example of a serial pipe system, which has multiple pipes, but the same
inlet and outlet conditions.

11.7.2. Parallel Pipe Systems

Parallel pipe systems involve pipes that have intersections, i.e., nodes (Figure 11.13). These pipe systems are
more challenging to solve. The EBE can be used between nodes and between nodes and inlets and outlets.
Conservation of Mass should be applied at each node. The result will be a system of non-linear equations
(due to velocity squared terms that appear in the EBE) that must be solved simultaneously. Often these
systems of equations are solved computationally using iterative techniques.

Interestingly, pipe networks have many similarities with electrical networks, with pipe resistances corre-
sponding to electrical resistances, flow rates corresponding to current, and head di↵erences (due to elevation
di↵erences or pumps) corresponding to voltage di↵erences. There are other electrical analogies too. For
example surge tanks have properties similar to capacitors, heavy paddle wheels have properties similar to
inductors, and ball and check valves act as diodes.

Figure 11.13. An example of a parallel pipe system, which has multiple, interconnecting
pipes. The location at which pipes intersect is known as a “node”.
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Two water reservoirs are connected by galvanized iron pipes.  Assume DA = 75 mm, DB = 50 mm, and h = 10.5 
m.  The length of both pipes is 100 m.  Compare the head losses in pipes A and B.  Compute the volume flow rate 
in each pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation from point 1 to point 2 traveling through each pipe. 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 
  (free surfaces) 

  (surface of large tanks) 
  (given) 

  (no fluid machines between points 1 and 2) 

 

 

and 

  and    

2 2
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Substituting into the Extended Bernoulli Equation gives: 

 (1) 

 (2) 

 
From Eqns. (1) and (2) we observe that the head loss in each pipe is the same and equal to 10.5 m. 
 
The pipes are made of galvanized iron so the roughness of the pipes is e = 0.15 mm (found from an average 
roughness table).  Hence, the relative roughness in each pipe is: 

   and    

 
Since we don’t yet know the velocity in each pipe, assume that the flows are in the wholly turbulent flow region 
so that the friction factor is independent of the Reynolds number.  For this case, the Moody chart (or the 
Colebrook relation) indicates that the friction factors corresponding to the relative roughnesses determined above 
are: 

  and   
 

Substitute the given data into Eqns. (1) and (2). 
h = 10.5 m 
Kentrance = 0.5 (assuming a sharp-edged entrance) 
Kelbow = 1.5 (assuming 90° threaded elbows) 
Kexit = 1.0 
g = 9.81 m/s2 
LA = 100 m 
LB = 100 m 
DA = 75 mm = 7.5*10-2 m 
DB = 50 mm = 5.0*10-2 m 
fA = 0.0234 (from above) 
fB = 0.0262 (from above) 
nH20 = 1.01*10-6 m2/s (water at 20 °C) 
 

Note that the sum of the minor loss coefficients (= 4.5 = 0.5 + 2*1.5 + 1) are not insignificant compared to the 
major loss coefficients so the minor losses cannot be neglected without significant error. 

  and    
 

Solving for the average velocities gives: 
  and   

The corresponding Reynolds numbers are: 

  and   (3) 

 
Unfortunately, these Reynolds numbers do not put us in the wholly turbulent zone on the Moody chart (although 
it’s very close) so we must try iterating to a solution instead.  For a new choice of friction factors, use the 
Reynolds number given in Eqn. (3) and consult the Moody chart (or the Colebrook formula). 

  and   

2

entrance elbow exit2
2

A A
A

A
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major, 31.2AK = major,B 52.4K =
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5

H20
Re 1.78*10A A

A
V D
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= = 4

H20
Re 9.42*10B B

B
V D
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= =

0.0244Af = 0.0275Bf =
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Using these friction factors we find: 
  and   

and 

  and   

Fortunately these Reynolds numbers give the same friction factors that we started with.   
 
Thus, the volumetric flow rate through each pipe is: 

 

 

 
 

2.36 m/sAV = 1.86 m/sBV =

5

H20
Re 1.75*10A A

A
V D
n

= = 4

H20
Re 9.21*10B B

B
V D
n

= =

2
2 31.04*10  m /s

4
A

A A
DQ V p -= =

2
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4
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In the five-pipe horizontal network shown in the figure, assume that all pipes have a friction factor f = 
0.025.  For the given inlet and exit flow rate of 2 ft3/s of water at 20 °C, determine the flow rate and 
direction in all pipes.  If pA=120 lbf/in2 (gage), determine the pressures at points B, C, and D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply the Extended Bernoulli Equation around the loops ABCA and DBCD. 

 (1) 

 (2) 

Note that the shaft head terms (HS,ABCA and HS,DBCD) are zero since there are no fluid machines in the loops.  
Simplifying Eqns. (1) and (2) gives: 

 (3) 
 (4) 

 
Expanding the head loss term and neglecting minor losses since the pipes are very long gives: 

 (5) 

 (6) 

Note that particular velocity directions have been assumed in the head loss expressions. 
 

At each pipe node the volumetric flow rate must be conserved (conservation of mass).  Hence: 

at node A:  Þ  (7) 

at node B:  Þ  (8) 

at node C:  Þ  (9) 

at node D:  Þ  (10) 
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Simplify and summarize Eqns. (5) - (10). 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

Note that Eqn. (16) is not independent since it can be formed by adding Eqns. (13) and (14), subtracting 
Eqn. (15) and noting that QD = QA.  Hence, Eqns. (11) - (15) represent five equations with five unknowns 
( , , , , and ) .  Note that fAB, fBC, fAC, fBD, and fCD are given in the problem statement 
along with each pipe’s length and diameter and the volumetric flowrate QA. 
 
Using the given data: 

fall pipes = 0.025 
LAB = LCD = 4000 ft 
LAC = LBD = 3000 ft 
LBC  = 5000 ft (from the Pythagorean theorem) 
DAB = DCD =  8/12 ft 
DAC = 6/12 ft 
DBD = 3/12 ft 
DBC = 9/12 ft 
QA = 2 ft3/s 

 
The system of non-linear algebraic equations (Eqns. (11) - (15)) can be solved iteratively.  One approach is 
given below. 

1. Assume a value of . 
2. Solve for  using Eqn. (13). 
3. Solve for  using Eqn. (11).  
4. Solve for  using Eqn. (15). 
5. Solve for  using Eqn. (12). 
6. Solve for  using Eqn. (14). 
7. Are the s from step 6 and step 1 equal?  If so, then the iterations are finished.  If not, then 

choose a new value for  and go to step 2. 
   

2 2 2 0BC ACAB
AB AB BC BC AC AC

AB BC AC

L LLf V f V f V
D D D

æ ö æ öæ ö
+ - =ç ÷ ç ÷ç ÷

è ø è ø è ø

2 2 2 0BC CDBD
BD BD BC BC CD CD

BD BC CD

L LLf V f V f V
D D D

æ ö æ öæ ö
- + + =ç ÷ ç ÷ç ÷

è ø è ø è ø
22

4 4
ACAB

AB AC A
DD V V Q

pp æ öæ ö
+ =ç ÷ç ÷ç ÷ ç ÷

è ø è ø
2 2 2

0
4 4 4
BC BD AB

BC BD AB
D D DV V V

p p pæ ö æ ö æ ö
+ - =ç ÷ ç ÷ ç ÷ç ÷ ç ÷ç ÷
è ø è øè ø

2 2 2
0

4 4 4
AC BC CD

AC BC CD
D D D

V V V
p p pæ ö æ ö æ ö

+ - =ç ÷ ç ÷ ç ÷ç ÷ ç ÷ ç ÷
è ø è ø è ø

22

4 4
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BD CD D
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BDV
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After some iteration.   
 = 3.40*100 ft/s Þ QAB = 1.19*100 ft3/s 
 = 4.14*100 ft/s Þ QAC = 8.13*10-1 ft3/s 
 = 2.24*100 ft/s Þ QBC = 9.90*10-1 ft3/s 
 = 5.17*100 ft/s Þ QCD = 1.80*100 ft3/s 
 = 4.02*100 ft/s Þ QBD = 1.97*10-1 ft3/s 

 
To find the pressure at the various nodes, apply the Extended Bernoulli Equation between the nodes. 

 

where 
pA = 120 psig 
pB = ? 
VA = VB  (the velocity just upstream of point B is equal to the velocity just downstream of point A) 
zA = zB  
HS,AB = 0 
rH20 @ 20 °C = 1.94 slug/ft3  (Note:  1 lbf = 1 slug×ft/s2) 

 

Þ   

pB = 1.08*102 psig 
 

Using a similar approach from A to C (or from B to C): 
pC  = 1.03*102 psig 
 

Using a similar approach from B to D (or from C to D): 
pD  = 7.57*101 psig 
 

ABV

ACV

BCV

CDV

BDV

2 2

, ,2 2 L AB S AB
B A

p V p Vz z H H
g g g g

a a
r r

æ ö æ ö
+ + = + + - +ç ÷ ç ÷ç ÷ ç ÷
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2
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AB AB
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