

Trans-Alaska Pipeline: 800 miles (1290 km), 48 in. (1.2 m) diameter
Pipe wall thickness ~0.5 in.
Takes oil 11.9 days to travel the length at an average speed of 3.7 mph (6.0 kph)

$$\left(\frac{p}{\rho g} + \alpha \frac{\overline{V}^2}{2g} + z\right)_{out} = \left(\frac{p}{\rho g} + \alpha \frac{\overline{V}^2}{2g} + z\right)_{in} - H_L + H_S$$

where

$$\alpha = \begin{cases} 2 & Re_D < 2300 \text{ (laminar)} \\ 1 & Re_D > 2300 \text{ (turbulent)} \end{cases}$$

$$H_S = \frac{\dot{W}_{other,on~CV}}{\dot{m}g}$$

Steady, Laminar, Viscous, Newtonian Fluid Flow Through a Circular Pipe

Assumptions:

- 1. steady flow
- 2. fully developed flow in the z direction
- 3. no body forces
- 4. axi-symmetric flow with no swirl component

Continuity Equation and Navier-Stokes Equation in the z direction:

$$\begin{split} &\frac{1}{r}\frac{\partial \left(ru_{r}\right)}{\partial r}+\frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0\\ &\rho\left(\frac{\partial u_{z}}{\partial t}+u_{r}\frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r}\frac{\partial u_{z}}{\partial \theta}+u_{z}\frac{\partial u_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}}\frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right]+\rho g_{z} \end{split}$$

Boundary Conditions:

- 1. No slip at the pipe circumference
- 2. Flow velocity remains finite

Velocity profile:

$$u_z = \frac{R^2}{4\mu} \left(-\frac{dp}{dz} \right) \left(1 - \frac{r^2}{R^2} \right)$$

$$Re_D = \frac{\bar{u}D}{v} < 2300$$

Average velocity:

$$\bar{u} = \frac{1}{\pi R^2} \int_{r=0}^{r=R} u_z(r) (2\pi r dr) = \frac{1}{2} u_{max} = \frac{D^2}{32\mu} \left(-\frac{dp}{dz} \right)$$

Wall shear stress:

$$\begin{split} \tau_w &= \mu \frac{du}{dr} \bigg|_{r=R} = \frac{R}{2} \left(\frac{dp}{dz} \right) = -\frac{4\mu \overline{u}}{R} \\ f_D &\equiv \left| \frac{4\tau_w}{\frac{1}{2}\rho \overline{u}^2} \right| = \frac{32\mu}{\rho \overline{u}R} = \frac{64}{Re_D} \end{split}$$

Revisiting the average velocity equation:
$$\bar{u} = \frac{D^2}{32\mu} \left| \frac{\Delta p}{L} \right| \implies \frac{\Delta p}{\frac{1}{2}\rho\bar{u}^2} = \frac{64\mu}{\rho D\bar{u}} \frac{L}{D} = 64 \frac{\mu}{\rho\bar{u}D} \frac{L}{D} = \frac{64}{Re_D} \frac{L}{D}$$

$$k \equiv \frac{\Delta p}{\frac{1}{2}\rho \bar{u}^2}$$

$$k_{\text{major}} = f_D \left(\frac{L}{D}\right)$$

$$\left(\frac{p}{\rho g} + \alpha \frac{\bar{V}^2}{2g} + z\right)_{out} = \left(\frac{p}{\rho g} + \alpha \frac{\bar{V}^2}{2g} + z\right)_{in} - H_L + H_S$$

Colebrook Formula:
$$\sqrt{\frac{1}{f}} \approx -2.0\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\mathrm{Re}_{_D}\sqrt{f}}\right)$$
 Haaland Formula $\sqrt{\frac{1}{f}} \approx -1.8\log_{10}\left[\frac{6.9}{\mathrm{Re}_{_D}} + \left(\frac{\varepsilon/D}{3.7}\right)^{1.11}\right]$

Average Roughness of Commercial Pipes

Material (new)	ft	mm
Riveted steel	0.003-0.03	0.9-9.0
Concrete	0.001-0.01	0.3-3.0
Wood stave	0.0006-0.003	0.18-0.9
Cast iron	0.00085	0.26
Galvanized iron	0.0005	0.15
Asphalted cast iron	0.0004	0.12
Commercial steel or wrought iron	0.00015	0.045
Drawn tubing	0.000005	0.0015
Plastic, glass	0.0 (smooth)	0.0 (smooth)

Table of Minor Loss Coefficients

Compo	onent	<u>K</u>	Comp	onent	K
a.	Elbows		*		
	Regular 90°, flanged	0.3	e.	Valves	
	Regular 90°, threaded	1.5		Globe, fully open	10
	Long radius 90°, flanged	0.2		Angle, fully open	2
	Long radius 90°, threaded	0.7		Gate, fully open	0.15
	Long radius 45°, flanged	0.2		Gate, 1/4 closed	0.26
	Regular 45°, threaded	0.4		Gate, ½ closed	2.1
				Gate, 3/4 closed	17
b.	180° return bends			Swing check, forward flow	2
	180° return bends, flanged	0.2		Swing check, backward flow	∞
	180° return bends, threaded	1.5		Ball valve, fully open	0.05
				Ball valve, 1/3 closed	5.5
c.	Tees			Ball valve, 2/3 closed	210
	Line flow, flanged	0.2			
	Line flow, threaded	0.9	f.	Entrances	
	Branch flow, flanged	1.0		Re-entrant	0.8
	Branch flow, threaded	2.0		Sharp-edged	0.5
				Slightly rounded	0.2
d.	Union, threaded	0.06		Well rounded	0.04

g. Exits
Re-entrant, sharp-edged,
slightly rounded, well-rounded 1

h. Sudden Contraction/Expansion:

Fig. 8.15 Loss coefficients for flow through sudden area changes. (Data from [1].)

http://mechanicstips.blogspot.com/2016/02/types-of-valves.html