
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

2.3. Pressure Forces on Submerged Surfaces and Center of Pressure

2.3.1. Flat Surfaces

Recall from Chapter 1 that the small pressure force dFp acting on a surface with a small area dA is,

dFp = p(�dA). (2.30)

This force relationship was written specifically for a di↵erentially small area since it’s possible that over a
large area, the pressure and the direction of the area could vary over the area (Figure 2.7). Thus, to find
the total pressure force on the whole area, the (small) force on a small area, where the area direction and
pressure are well defined, is calculated first and then these are added, or integrated, over the whole area, i.e.,

FP =

ˆ
A
dFp =

ˆ
A
p(�dA). (2.31)

Figure 2.7. A sketch showing how the pressure magnitude and area orientation may change
over a large area. However, over a di↵erentially-small area, both the pressure and surface
orientation are well defined.

Let’s consider the example of a fish tank completely filled with water, as shown in Figure 2.8. We wish to
determine the net pressure force acting on bottom and right tank walls. Start first with the pressure force

Figure 2.8. A completely-filled fish tank used in the example.

on the tank bottom, (Figure 2.9),

Fp,bottom =

ˆ z=W

z=0

ˆ x=L

x=0
p
h
�dxdzĵ

i

| {z }
=�dA

= �ĵ

ˆ z=W

z=0

ˆ x=L

x=0
⇢gH|{z}
=pgage

dxdz = �ĵ⇢gHWL, (2.32)

where, at the bottom of the tank, the gage pressure remains constant at,

pbottom,
gage

= ⇢gH. (2.33)
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Figure 2.9. The bottom surface of the fish tank.

Notes:

(1) The magnitude of the pressure force on the bottom is equal to the weight of the water in the tank.
This makes sense because if there are no shear stresses at the side walls, then the pressure force at
the bottom of the tank must support all of the weight of the liquid sitting above it.

(2) A gage pressure is used in Eq. (2.32) to simplify the pressure force calculation. Since there is
atmosphere on the other side of the tank bottom, then the gage pressure due to the atmosphere
is zero (patm,gage = 0) and the corresponding pressure force is zero. We get the same result as
Eq. (2.32) if absolute pressures are used everywhere instead,

Fp,bottom =

ˆ z=W

z=0

ˆ x=L

x=0
(patm + ⇢gH)(�dxdzĵ)

| {z }
pressure force due to water
using an absolute pressure

+

ˆ z=W

z=0

ˆ x=L

x=0
(patm)(dxdzĵ)

| {z }
pressure force due to
atmosphere using

an absolute pressure

= �ĵ⇢gHWL. (2.34)

Note that the unit normal vector for the atmospheric side (bottom side, second integral) is in the
opposite direction of the unit normal vector for the water side (first integral) since we’re on opposite
sides of the wall.

(3) Since the pressure and the area orientation don’t vary over the bottom surface, we could have also
found the pressure force on the bottom of the tank using,

Fp,bottom = p(�A) = ⇢gH(�WLĵ). (2.35)

It’s important to emphasize that we can only avoid integration if both the pressure and area orien-
tation are constant on the macroscopic area.

Now let’s calculate the pressure force acting on the right side wall (Figure 2.10),

Fp,right =

ˆ z=W

z=0

ˆ y=H

y=0
p
h
dydzî

i

| {z }
=�dA

= î

ˆ z=W

z=0

ˆ y=H

y=0
⇢g(H � y)| {z }

=pgage

dydz = î
1

2
⇢gH2W. (2.36)

Figure 2.10. The right surface of the fish tank.
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Notes:

(1) Recall from the diagram that the coordinate system is located at the bottom of the tank. Thus,
the (gage) pressure varies as,

pgage = ⇢g(H � y). (2.37)

This pressure still varies linearly with depth, as shown in Figure 2.11.

Figure 2.11. The pressure variation with depth in the fish tank example.

(2) The small area element dA = �dydzî (Figure 2.10) is used since the pressure has a well-defined
value on this area. Since the pressure only varies in the y direction, we could have also used the
area element dA = �Wdyî (Figure 2.12). The pressure is well defined on this “strip” of area too,

Fp,right =

ˆ y=H

y=0
p(�Wdyî) = îW

ˆ y=H

y=0
⇢g(H � y)dy = î⇢g

1

2
H2W. (2.38)

A vertical strip of area, i.e., dA = �Hdzî, can’t be used to determine the pressure force since the
pressure isn’t well defined on this surface. The pressure varies in the y direction so over this vertical
strip, the pressure doesn’t remain constant.

Figure 2.12. An alternate, and easier di↵erential area for integrating the pressure force on
the right side wall.

(3) The pressure force is equal in magnitude to the area under the pressure curve shown in Note #1,

|dFp| =
1

2
(⇢gH)| {z }
base

(H)|{z}
height

(W )|{z}
depth

=
1

2
⇢gH2W. (2.39)

This same behavior is true for the pressure force on the base.

Now that we’ve determined the resultant pressure force on the right surface, let’s determine where this
resultant force acts (Figure 2.13). This location is known as the center of pressure (CP). The center of
pressure is found by ensuring that the moments generated by the resultant pressure force equal the moments
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Figure 2.13. A sketch showing the distributed pressure forces, the resultant pressure force,
and the location of the center of pressure.

generated by the actual, distributed pressure forces. Consider the right side of the tank and Figure 2.10.
Balancing moments about the origin,

xCP ⇥ Fp,right| {z }
moment due to
resultant force

acting at the CP

=

ˆ y=H

y=0

ˆ z=W

z=0
(xî+ yĵ + zk̂)| {z }
=moment arm

⇥ p(�dA)| {z }
=dFp

(2.40)

(xCP î+ yCP ĵ + zCP k̂)⇥
✓
1

2
⇢gH2W î

◆
=

ˆ H

0

ˆ W

0
(xî+ yĵ + zk̂)⇥

h
⇢g(H � y)dzdy(î)

i
, (2.41)

yCP
1

2
⇢gH2W (�k̂) + zCP

1

2
⇢gH2W (ĵ) =

ˆ H

0
y⇢g(H � y)Wdy(�k̂) +

ˆ H

0

1

2
W 2⇢g(H � y)dy(ĵ), (2.42)

yCP
1

2
⇢gH2W (�k̂) + zCP

1

2
⇢gH2W (ĵ) =

1

6
⇢gH3W (�k̂) +

1

4
W 2⇢gH2(ĵ), (2.43)

) yCP =
1

3
H and zCP =

1

2
W. (2.44)

The center of pressure in the x direction is undefined since the resultant and distributed pressure forces act
in the x direction and, thus, there is no moment generated by the forces about the x axis.

Notes:

(1) The center of pressure is also equal to the center of area under the pressure distribution curve.
(2) We can take moments about any location and get the same result.
(3) The center of pressure for the right wall in the z direction may also be determined from symmetry.
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For each of the following pressure profiles,  
a. Determine the magnitude of the total pressure force acting on the horizontal plate.   
b. Determine the location of the center of pressure. 
Assume the plate has unit depth in the z direction.  Show all of your work. 
 
 
1.  2. 
 
 
 
 
 
 
3.  
 
 
 
 
 
 
SOLUTION:  
 
The total pressure force may be found via integration of the differential pressure force. 

           (Note:  The differential area is dA = dx(1) since the plate has unit depth.) (1) 

 

1.   Þ  (2) 

2.   Þ   (3) 

3.   Þ   (4) 

 
The center of pressure may be found by equating the moment resulting from the pressure distribution to the 
moment caused by the total pressure force acting at the center of pressure. 

  Þ   (5) 

 

1.   Þ  (6) 

2.   Þ   (7) 

3.   Þ   (8) 

 

   
Fp = p dx 1( )

=dA


x=0

x=L

∫
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x L

p
x

F p dx
=

=

= ò 0pF p L=

( ) ( )2 21
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p
x
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=

=
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x L
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=
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=dA

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
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=

=
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=
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SOLUTION: 
 
One approach to finding the net force on the wall is to integrate the pressure force along the wall, 

,  (1)  

where, 
, (2) 

 
and, 

. (3) 
 

Note that since we’ll be integrating in the y direction (since the pressure varies in that direction), we should 
express dx in terms of dy, 

 . (4)  

 
Substituting and integrating as y goes from zero to H, 

 , (5) 

, (6) 

. (7) 
 

We could have also solved the integral by splitting it into two parts, 

 , (8) 

  Same answer as before! (9) 

Note that in the 2nd integral in Eq. (8), the y dependence on x needed to be made explicit in order to 
integrate properly with respect to x.  An approach similar to what was used to derive Eq. (4) was utilized. 
  

Fp = − pdA
A
∫

p = ρgy

dA = −wdyêx −wdxêy

dy
dx

= H
L
⇒ dx = L

H
⎛
⎝⎜

⎞
⎠⎟ dy

Fp = − ρgy( ) −wdyêx −w
L
H

⎛
⎝⎜

⎞
⎠⎟ dyêy

⎡
⎣⎢

⎤
⎦⎥y=0

y=H

∫ = ρgw êx ydy
y=0

y=H

∫ + êy
L
H

⎛
⎝⎜

⎞
⎠⎟ ydy

y=0

y=H

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Fp = ρgw 1
2 H

2êx + 1
2

L
H

⎛
⎝⎜

⎞
⎠⎟ H

2êy
⎡
⎣⎢

⎤
⎦⎥

Fp = 1
2 ρgwH

2êx + 1
2 ρgwLHêy

Fp = − ρgy( ) −wdyêx( )
y=0

y=H

∫ + − ρgy( ) −wdxêy( )
x=0

x=L

∫ = 1
2 ρgwH

2êx + − ρg H
L

⎛
⎝⎜

⎞
⎠⎟ x

⎡
⎣⎢

⎤
⎦⎥
−wdxêy( )

x=0

x=L

∫

Fp = 1
2 ρgwH

2êx + 1
2 ρgw

H
L

⎛
⎝⎜

⎞
⎠⎟ L

2êy = 1
2 ρgwH

2êx + 1
2 ρgwHLêy

L 

H 

x 

y dy 
dx 

Calculate the net horizontal and vertical forces acting on the planar surface shown below.  The surface 
has a width w into the page. 
 
 
 
 
 
 
 
 
 
 

L 

H 

  n̂
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An alternate approach to solving this problem is to balance forces on the dashed volume of fluid shown 
below. 
 
 
 
 
 
 
 
 

  The same answer as before! (10) 

    The same answer as before! (11) 
Note that from Newton’s 3rd Law, the force the wall exerts on the fluid is equal and opposite to the force 
the fluid exerts on the wall. 

Fx∑ = 0 = ρgy( ) wdy( )
y=0

y=H

∫ − Fx ⇒ Fx = 1
2 ρgwH

2

Fy∑ = 0 =W − Fy = ρ 1
2 LHwg − Fy ⇒ Fy = 1

2 ρgLHw

L 

H 

x 

y 
Fx 

Fy 

W 
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Your professor purchased a watertight box to hold his camera while traveling to Ft. Myers Beach, FL 
during winter break.  The box’s dimensions are shown in the photograph.  During the flight, he opened the 
box and then re-sealed it.  Upon reaching his destination, he found that he had significant difficulty trying 
to open the box.  
a. Why was opening the box such a challenge? 
b.  Estimate the force required to open the box if the force is applied at the front of the box.  Note that the 

box is hinged at the back. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
SOLUTION:  
 
The box was difficult to open because the air in the interior of the box was at the cabin pressure of the 
aircraft (required to be pressurized to a maximum altitude of 8000 ft altitude1) and the air outside the box 
was at the local atmospheric pressure (Ft. Myers Beach, FL which is at sea level).  This pressure difference 
resulted in a net pressure force acting to hold the lid shut. 
 
Sum moments about the lid’s hinge, 

, (1) 

, (2) 

. (3) 

where 
pFMB = psea level = 14.7 psia  (using a U.S. Standard Atmosphere) 
pcabin = p8000 ft altitude = 10.9 psia  (using a U.S. Standard Atmosphere) 
Alid = wd = (6.46 in) (5.11 in) = 33.0 in2 
Þ  Flid = 62.5 lbf! 
 
 
 

1  https://en.wikipedia.org/wiki/Cabin_pressurization 

		 
Mhinge =0= Fd − x

moment
arm

! patm − pbox( )
pressure	difference
" #$ %$

wdx
=dA
!

x=0

x=d

∫∑

		
Fd = patm − pbox( )12wd

2

		
F = patm − pbox( )12wd

w = 6.46 in 
d = 5.11 in 
h = 3.25 in 

d 

w 

h 
applied 
force 

hinge 
lid 

hi
ng

e w 
x 

dx 

F 

d 

pbox 

patm 
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The gate shown below has a width of w = 8 ft and opens to let fresh water out when the ocean tide drops.  
The hinge is a height h = 2 ft above the freshwater level.  At what ocean level H will the gate first open?  
You may neglect the weight of the gate. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance moments about the hinge, 

, (1) 

, (2) 

, (3) 

, (4) 

, (5) 

, (6) 

, (7) 

 

M hinge∑ = 0 = D + h − y( )
moment arm length
   ρfreshg D − y( )

pressure
   wdy( )

area


y=0

y=D

∫ − D + h − y( )
moment arm length
   ρseag H − y( )

pressure
   wdy( )

area


y=0

y=H

∫

D + h − y( )ρfreshg D − y( ) wdy( )
y=0

y=D

∫ = D + h − y( )ρseag H − y( ) wdy( )
y=0

y=H

∫

ρfresh D + h − y( ) D − y( )dy
y=0

y=D

∫ = ρsea D + h − y( ) H − y( )dy
y=0

y=H

∫

ρfresh D2 + Dh − 2Dy − hy + y2( )dy
y=0

y=D

∫ = ρsea DH + Hh − Hy − Dy − hy + y2( )dy
y=0

y=H

∫

ρfresh D2 + Dh( )y − 1
2 2D + h( )y2 + 1

3 y
3⎡⎣ ⎤⎦y=0

y=D
= ρsea DH + Hh( )y − 1

2 H + h + D( )y2 + 1
3 y

3⎡⎣ ⎤⎦y=0
y=H

ρfresh D2 + Dh( )D − 1
2 2D + h( )D2 + 1

3D
3⎡⎣ ⎤⎦ = ρsea DH + Hh( )H − 1

2 H + h + D( )H 2 + 1
3H

3⎡⎣ ⎤⎦

D3 + D2h − D3 − 1
2 D

2h + 1
3D

3 = ρsea
ρfresh

DH 2 + H 2h − 1
2 H

3 − 1
2 H

2h − 1
2 DH

2 + 1
3H

3( )

H 

hinge 

D 

h 

stop 

H 

hinge 

D 

h 

y 

sea water 
(SG = 1.025) 

water 

gate 
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, (8) 

, (9) 

. (10) 

 
Using the given data, 

SGsea = 1.025 
h = 2 ft 
D = 10 ft 
Eq. (10)  Þ   (11) 

Solving this equation numerically gives  H = 9.85 ft  
For sea levels less than this critical value, the gate will open. 

1
2 D

2h + 1
3D

3 = SGsea − 1
6 H

3 + 1
2 H

2h + 1
2 DH

2( )
1
6 SGseaH

3 − 1
2 SGsea D + h( )H 2 + 1

2 D
2h + 1

3D
3 = 0

H 3 − 3 D + h( )H 2 +
3h + 2D( )D2

SGsea

= 0

H 3 − 36 ft( )H 2 + 2536.6 ft3( ) = 0
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The w = 4 ft wide gate shown in the figure pivots about a hinge.  The gate is held in place by a 
counterweight with a weight of W = 2000 lbf, which is located a distance h = 5 ft below the base of the 
water and a distance l = 3 ft from the gate.  Determine the depth of the water, H, for which the gate remains 
in the equilibrium position shown.  You may assume the gate mass is small compared to the counterweight 
mass, and that the hinge friction is negligible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance moments about the hinge, 

, (1) 

, (2) 

, (3) 

, (4) 

. (5) 

 
  

 

M hinge∑ = 0 = y
moment arm length

 ρg H − y( )
pressure

   wdy( )
area


y=0

y=H

∫ − lW
moment due to
counterweight



ρgw y H − y( )dy
y=0

y=H

∫ = lW

ρgw 1
2 Hy

2 − 1
3 y

3( )y=0
y=H

= lW

1
6 H

3 = lW
ρgw

H = 6lW
ρgw

⎛
⎝⎜

⎞
⎠⎟

1
3

H 

hinge 

l 

counterweight 

gate 

h 

H 

hinge 

l 

counterweight 

gate 

h 

y 
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Using the given data, 
rg = 62.4 lbf/ft3 
W = 2000 lbf 
l = 3 ft 
w = 4 ft 

Þ  H = 5.2 ft  
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The rigid, L-shaped gate shown in the figure can rotate about the hinge and rests against the rigid support at 
point A.  What is the minimum horizontal force, F required to hold the gate closed if its width is w = 3 m 
and the lengths are h = 4 m and l = 2 m?  The height of the free surface above the hinge is H = 3 m.  You 
may neglect the weight of the gate and the friction in the hinge.  Note that the back of the gate is exposed to 
the atmosphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION:  
 
 
 
 
 
 
 
 
 
 
 
 
 
Balance moments about the hinge, 

, (1) 

, (2) 

, (3) 

, (4) 

. (5) 

 
Using the given data, 

r = 1000 kg/m3 
� = 9.81 m/s2 
w = 3 m 
H = 3 m 
h = 4 m 
l = 2 m 

 

M hinge∑ = 0 = y − H( )
moment arm length
  ρgy

pressure
 wdy( )

area


y=H

y=H+h

∫ + x
moment arm length

 ρg H + h( )
pressure

   wdx( )
area


x=0

x=l

∫ − hF
moment due to
applied force



ρgw y − H( )ydy
y=H

y=H+h

∫ + ρg H + h( )w xdx
x=0

x=l

∫ − hF = 0

hF = ρgw 1
3 y

3 − 1
2 Hy

2( )y=H
y=H+h

+ 1
2 ρg H + h( )wl2

hF = ρgw 1
3 H + h( )3 − H 3⎡⎣ ⎤⎦ −

1
2 H H + h( )2 − H 2⎡⎣ ⎤⎦( ){ }+ 1

2 ρg H + h( )wl2

F = ρgw 1
2 Hh + 1

3 h
2 + 1

2
H
h +1( )l2⎡

⎣
⎤
⎦

water 

h 

l 
F 

H hinge 

gate 

A 

water 

h 

l 
F 

H hinge 

x 
y 
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Þ  F = 437 kN  
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A rectangular block of concrete (SG=2.5) is used as a retaining wall or dam for a reservoir of water: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The block has a height, a, a breadth, b, and unit depth into the page.  The depth of the water is 3a/4.  
 
a.   Determine the critical ratio, b/a, below which the block will be overturned by the water (figure a).  

Assume the block does not slide on the base but can rotate about the point A.  For figure (a), there is no 
fluid underneath the block. 

b. What is the critical ratio, b/a,  if  there is seepage and a thin film of water forms under the block (figure 
b)?  Assume that a seal at point A prevents water from flowing out from underneath the block. 

 
 
SOLUTION:  
 
Draw a free body diagram of the block.  Note that when the block is on the verge of tipping over, the 
vertical force the ground exerts on the block is zero. 
 
 
 
 
 
 
 
 
 
Sum moments about point A. 

  (1) 

where 
 (2) 

   (note that this is a gage pressure) (3) 
 
Substitute and simplify. 

 (4) 

   

M A = 0∑ = 1
2 b( )W − y p dy ⋅1( )

=dA


=dF
 

y=0

y= 3
4 a

∫

( )block 1W b a gr= × ×

( )3
20 4Hp g a yr= -

( )( ) ( )
3
4

31
block 202 4

0

0
y a

H
y

b bag y g a y dyr r
=

=

- - =ò

¾ a 
a 

b 

concrete 
block 

A 

Figure (a) 

water ¾ a 
a 

b 

concrete 
block 

A 

Figure (b) 

water 

thin film of water 

¾ a 
a 

b 

A 

water W 
x 

y 
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 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

  when the block is just about to tip over (10) 

Thus, the block will tip over for SGblock = 2.5 if b/a < 0.237. 
 
 
Now draw the free body diagram for a block with a thin liquid layer underneath it. 
 
 
 
 
 
 
 
 
 
 
Sum moments about point A. 

  (11) 

where the weight and pressure on the side are given in Eqs. (2) and (3).  The last term in the previous 
equation is the (gage) pressure that the liquid layer on the bottom exerts on the block. 
 
Substitute and simplify. 

  (12) 
 (13) 

 (14) 

  when the block is just about to tip over (15) 

Thus, the block will tip over for SGblock = 2.5 if b/a < 0.283. 
 
 
 
 
 

( )
3
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2 231
block 202 4

0

0
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=
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- - =
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è ø

block

3 1
8

b
a SG
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M A = 0∑ = 1
2 b( )W − yp dy ⋅1( )
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∫ − 1
2 b( )ρH 20g 3

4 a
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
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The 3 m wide (into the page) gate shown in the figure is hinged at point H.  Calculate the force required at 
point A to hold the gate closed 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw a free body diagram of the gate, just as the gate is about to open.  
 
 
 
 
 
 
 
 
 
 
Sum moments about the hinge H and set them equal to zero since the gate isn’t accelerating, 

, (1) 

where T is the thickness of the gate into the page.  The first z in the integral is the moment arm out to the 
differential hydrostatic pressure force dFp acting on area dA = Tdz.  Note that the pressure is a function of 
the depth from the free surface, D + zsinq. 
 
Simplify Eq. (1) and solve for FA, 

, (2) 

, (3) 

. (4) 

 
Using the given data, 

r = 1000 kg/m3, 
g = 9.81 m/s2, 
T = 3 m, 
L = 4 m, 
D = 1.5 m, 
q = 30°, 
=>  �� = 167 kN 

!! 

MH∑ =0= zρg D+ zsinθ( )
=p

! "## $##
Tdz( )
=dA
%

=dFp

! "### $###
z=0

z=L

∫ −LFA

!!
LFA = ρgT Dzdz + sinθz2dz( )

z=0

z=L

∫

!!LFA = ρgT 1
2DL

2 + 1
3L

3sinθ( )
!!FA = ρgTL 1

2D+
1
3Lsinθ( )

water 

1.5 m 

4 m 

gate 

A 

H 
FA = ? 

30° 

D 
L H 

FA  

q 

z 

dz dFp 

zsinq 
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A plane gate of uniform thickness t and width into the page w holds back a depth of water as shown.  Find 
the minimum weight of the gate needed to keep the gate closed.  
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw a free body diagram of the gate. 
 
 

 
 
 
 
 
 
 
 
 
Sum moments about the gate’s hinge, noting that the gate is in equilibrium and just about to open, 

, (1) 

, (2) 

, (3) 

. (4) 

!! 

Mhinge∑ =0= − L
2

⎛
⎝⎜

⎞
⎠⎟
W cosθ( )+ z ρgzsinθ( )

=p
! "# $#

wdz( )
=dA
%

=dFp

! "## $##
z=0

z=L

∫

!!
L
2

⎛
⎝⎜

⎞
⎠⎟
W cosθ( ) = ρgwsinθ z2dz

z=0

z=L

∫

!!
L
2

⎛
⎝⎜

⎞
⎠⎟
W cosθ( ) = 13ρgwL

3sinθ

!!W = 2
3ρgwL

2 tanθ

water 
L 

q 
hinge 

t 

dFp 

q 
hinge 

z 

dz 

zsinq 

W 

q Note that the floor exerts no force on the gate 
since the gate is just about to open. 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 144 2022-08-30



 statics_74 

Page 1 of 1 

The tank shown below is partially filled with a liquid of density ρ and is open to the atmosphere.  A triangular gate 
is hinged at the bottom and held closed by a force applied at the top.  Determine the force F in terms of the liquid 
density ρ, the acceleration due to gravity g, the liquid depth D, the gate height H, and the gate width W. 

 
 

SOLUTION: 

 
Balance moments on the gate.  Since the pressure varies over the surface of the gate and because the gate width 
changes with depth, we’ll need to integrate the pressure force over the gate surface.  To do this, divide the gate 
into small areas over which the pressure remains constant.  

∑"!"#$% = $ = %&'̂ × −+,-. + ∫ 1'̂⏟
&'&()*+,&

× 34-5
.,(//0,(
1',2(

3 , (1) 

where, 
34- = −637, (2) 
37 = 29456: (& − 1)31%−,-., (3) 
6$7$% = =>(? − 1). (4) 

 
Substitute and solve for F, 

$ = &+@̂ + ∫ 1=>(? − 1)29456: (& − 1)31(−@̂)
89:
89; , (5) 

&+ = => 946:∫ 1(? − 1)(& − 1)31:
; = => 946: ∫ [?&1 − (? + &)15 + 1<]31:

; , (6) 

+ = => 946!: C
=
5?

<& − =
< (? + &)?

< + =
>?

>D, (7) 

+ = => 946!: C
=
5?

<& − =
<?

> − =
<&?

< + =
>?

>D, (8) 

+ = =
?=> 9

4:"
6! : 9& −

=
5?:. (9) 
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A cylindrical tank if filled with water.  In order to control the flow rate from the tank, a pressure can be 
applied to the water surface by a compressor.  For an applied absolute pressure of 3 bar, calculate the 
hydrostatic force exerted by the water on the end surface of the tank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Draw the pressure distribution acting on the tank end surface due to the water in the tank. 
 
 
 
 
 
 
 
 
 
The hydrostatic pressure force on the tank surface due to the water is,  

, (1) 

, (2)  

, (3)	

. (4) 
 
Using the following parameters: 

R = 0.5 m 
p0 = 3 bar (abs) = 300 kPa (abs) 
r = 1000 kg/m3 

g = 9.81 m/s2 
=> F = 23.6 MN. 

 
Note an alternate approach to solving the problem is to break the applied pressure into a constant part at 
pressure p0 and the linearly increasing part, as shown in the figures below.  
 
 
 

		 

F = pdA
z=0

z=2R

∫ = p0 + ρgz( )
=p

! "# $#
2 R2 − R− z( )2dz⎡

⎣
⎢

⎤

⎦
⎥

=dA
! "### $###z=0

z=2R

∫

		
F =2 p0 + ρgz( ) 2Rz − z2 dz

z=0

z=2R

∫ =2 p0 2Rz − z2 dz
z=0

z=2R

∫ + ρg z 2Rz − z2 dz
z=0

z=2R

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		
F =2 p0

πR2

2 + ρgπR
3

2
⎡

⎣
⎢

⎤

⎦
⎥

		F =πR
2 p0 + ρgR( )

1 m 

5 m 

3 bar (abs) 

outlet pipe 
water 

end surface 
of tank 

p0 

z 
2R 

dz 
R 

R - z 

[R2 – (R – z)2]1/2 

p0 p0 

= + 

	
		
F2 =2ρg z 2Rz − z2 dz

z=0

z=2R

∫			F1 = p0πR
2
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A semi-circular plane gate is hinged along B and held by horizontal force F applied at point A.  The liquid in the 

reservoir is water.  Calculate the minimum force required to hold the gate closed.  Hint:  An integral table or 

symbolic algebra software will be helpful in solving the integrals that appear in the derivation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOLUTION: 

 

 

 

 

 

 

 

 

 

 

 

 

Sum moments about point B. 

 (1) 

 (2) 

 (3) 

 (4) 

Evaluate the integrals using an integral table or symbolic algebra software (e.g., Mathematica). 

 (5) 

 (6) 

 (7) 

 

  

0

0
y R

B
y

M RF ypdA
=

=

= = -å ò

   

RF = y ρg H − y( )
= pgage

  
2 R2 − y2 dy

=dA
  

y=0

y=R

∫

( ) 2 2

0

2 y R

y

gF y H y R y dy
R
r =

=

= - -ò

2 2 2 2 2

0 0

2 y R y R

y y

gF H y R y dy y R y dy
R
r = =

= =

é ù
= - - -ê ú

ê úë û
ò ò

( ) ( )
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22 2 2 2 2 2 4 1

2 20
0

2 1 1 2 tan
3 8

y R
y R

y
y

g yF H R y y R y y R R
R R y
r

=
=

-

=
=

é ùæ öæ öê úç ÷ç ÷= - - - - - +ê úç ÷ç ÷-è øè øê úë û
3 42 1 1

3 8 2
gF HR R
R
r pæ ö= -ç ÷

è ø

2 12
3 16

F gR H Rpr æ ö\ = -ç ÷
è ø

F 
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B 

A A 

B 

side view of gate 

F 
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B 

A 

x 

dy 

y 

y R 
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2.3.2. Curved Surfaces

Figure 2.14. The parabolically-shaped wall used in the example.

The resultant pressure force and center of pressure location for curved surfaces may be found in the same way
as for flat surfaces. The only significant di↵erence is that the unit normal vectors for the di↵erentially-small
area elements may change with position. For example, let’s determine the net pressure force and center of
pressure on the parabolically-shaped wall shown in Figure 2.14. Assume the wall is planar and has a depth
W into the page.

Fp =

ˆ
A
p(�dA) =

ˆ
A
⇢g(H � y)| {z }

=pgage

h
�(Wdxĵ �Wdyî)

i

| {z }
�dA

= �⇢gW

ˆ
A
(H � y)(dxĵ � dyî). (2.45)

Before setting the limits on the integral, note that y is a function of x on the wall surface, which also means
that a small displacement in the y direction is related to a small displacement in the x direction,

y = H
⇣ x

L

⌘2
=) dy =

2H

L2
xdx. (2.46)

We can use this information to express the integral in terms of a single variable (we’ll use x, but we could
use y too). Substituting Eq. (2.46) into Eq. (2.45) gives,

Fp = �⇢gW

ˆ x=L

x=0


H �H

⇣ x

L

⌘2
�✓

dxĵ � 2H

L2
xdxî

◆
, (2.47)

= �⇢gWH

"
ĵ

ˆ x=L

x=0

✓
1� x2

L2

◆
dx� î

2H

L2

ˆ x=L

x=0

✓
x� x3

L2

◆
dx

#
, (2.48)

= �⇢gWH


ĵ

✓
L� 1

3
L3L2

◆
� î

2H

L2

✓
1

2
L2 � 1

4
L4L2

◆�
, (2.49)

= ⇢gWH

✓
1

2
H î� 2

3
Lĵ

◆
, (2.50)

Fp =
1

2
⇢gWH2î� 2

3
⇢gWHLĵ. (2.51)

This result is the pressure force the fluid exerts on the wall.
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The center of pressure is found by balancing moments, identical to what was used for planar surfaces. Balance
moments about the origin,

xCP ⇥ Fp =

ˆ
A
(xî+ yĵ)⇥ [⇢g(H � y)]

h
�(Wdxĵ �Wdyî)

i
= �⇢gW

ˆ
A
(H � y)(xdx+ ydy)k̂, (2.52)

(xCP î+ yCP ĵ)⇥
✓
1

2
⇢gWH2î� 2

3
⇢gWHLĵ

◆
(2.53)

= �⇢gW k̂

ˆ x=L

x=0


H

✓
1� x2

L2

◆
xdx+H

✓
1� x2

L2

◆
H

✓
x2

L2

◆
2H

L2
xdx

�
, (2.54)

� ⇢gWH

✓
xCP

2

3
L+ yCP

1

2
H

◆
k̂ = �⇢gWHk̂

ˆ x=L

x=0

✓
x� x3

L2

◆
+

2H2

L4

✓
x3 � x5

L2

◆�
dx, (2.55)

xCP
2

3
L+ yCP

1

2
H =

1

2
L2 � 1

4

L4

L2
+

2H2

L4

✓
1

4
L4 � 1

6

L6

L2

◆
=

1

4
L2 +

1

6
H2, (2.56)

) yCP =

✓
�4

3

L

H

◆
xCP +

✓
1

2

L2

H
+

1

3
H

◆
. (2.57)

The previous equation, which is the equation of a line, is known as the line of action. It is the line along which
the resultant force acts. This line of action is shown graphically in Figure 2.15. Now find the intersection of

Figure 2.15. A sketch showing the line of action for the parabolic wall example.

the line of action and the wall by substituting Eq. (2.46) into Eq. (2.57),

H
⇣xCP

L

⌘2
=

✓
�4

3

L

H

◆
xCP +

✓
1

2

L2

H
+

1

3
H

◆
, (2.58)

⇣xCP

L

⌘2
+

4

3

✓
L

H

◆2 ⇣xCP

L

⌘
�
"
1

2

✓
L

H

◆2

+
1

3

#
= 0. (2.59)

Solving this (unfortunately messy) equation gives,

xCP

L
= �2

3

✓
L

H

◆2

+

s
4

9

✓
L

H

◆4

+
1

2

✓
L

H

◆2

+
1

3
. (2.60)

Note that only the positive root of the previous equation makes physical sense. Now that we have xCP , the
value for yCP can then be found by substituting this value into Eq. (2.46).

Notes:
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(1) The horizontal component of the resultant pressure force in Eq. (2.51) is equal to the resultant force
acting on the vertical projected area HW , i.e., FP,x = 1

2⇢gH
2W .

An alternate method for determining the resultant force and center of pressure is to balance forces on a region
of fluid bordered by the wall. For example, balance forces on the region of fluid identified by the dotted line
in Figure 2.16.

Figure 2.16. Free body diagram for the region of fluid enclosed by the red dashed line.

X
Fx = 0 =

1

2
⇢gH2W � FR,x =) FR,x =

1

2
⇢gH2W, (2.61)

X
Fy = 0 = �G+ FR,y =) FR,y = G, (2.62)

where,

G =

ˆ x=L

x=0
⇢g (H � y)dxW| {z }

=dV

=

ˆ x=L

x=0
⇢g


H �H

⇣ x

L

⌘2
�
dxW, (2.63)

= ⇢gHW

ˆ x=L

x=0

✓
1� x2

L2

◆
dx = ⇢gHW

✓
L� 1

3

L3

L2

◆
, (2.64)

G =
2

3
⇢gHWL, (2.65)

so that,

FR,y =
2

3
⇢gHWL. (2.66)

These magnitudes for FR,x and FR,y are exactly the same as what was found in Eq. (2.51). Note that here
FR,x and FR,y are the force components the wall exerts on the fluid so, from Newton’s Third Law, the fluid
exerts equal and opposite force components on the wall.

The center of pressure about the z axis is found by balancing moments about the origin, the same as what
was done for planar walls,

xCP ⇥ Fp =

0

BBBBB@

1

3
H ĵ

| {z }
CP on
left side

⇥ 1

2
⇢gH2W î

| {z }
resultant force
on left side

1

CCCCCA
+

2

66666664

(xCM î+ yCM ĵ)| {z }
center of mass

⇥�2

3
⇢gHWLĵ

| {z }
weight of
fluid region

3

77777775

. (2.67)
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Since the weight has no x component, we need not worry about calculating yCM . However, we do need the
x component of the center of mass, which we can find via integration (refer to the figure),

xCMG =

ˆ x=L

x=0
x⇢g (H � y)Wdx| {z }

=dV

, (2.68)

=

ˆ x=L

x=0
x⇢g


H �H

⇣ x

L

⌘2
�
Wdx, (2.69)

= ⇢gHW

ˆ x=L

x=0

✓
x� x3

L2

◆
dx, (2.70)

xCM
2

3
⇢gHWL = ⇢gHW

✓
1

2
L2 � 1

4

L4

L2

◆
, (2.71)

=
1

4
⇢gHWL2, (2.72)

xCM =
3

8
L. (2.73)

Substituting this value back into the right-hand side of Eq. (2.67) and making use of the resultant pressure
force on the left-hand side,

(xCP î+ yCP ĵ)⇥
✓
1

2
⇢gH2W î� 2

3
⇢gHWLĵ

◆
(2.74)

=

✓
1

3
H ĵ ⇥ 1

2
⇢gH2W î

◆
+

✓
3

8
Lî⇥�2

3
⇢gHWLĵ

◆
, (2.75)

� xCP
2

3
⇢gHWLk̂ � yCP

1

2
⇢gH2W k̂ = �1

6
⇢gH3W k̂ � 1

4
⇢gHWL2k̂, (2.76)

yCP =

✓
�4

3

L

H

◆
xCP +

✓
1

3
H +

1

2

L2

H

◆
, (2.77)

which is the same line of action found previously.

Notes:

(1) Either approach to finding the resultant force and center of pressure (integration or balancing forces
on a wisely-chosen region of fluid) is fine. One method may be easier than the other, depending on
the geometry of the problem.

(2) Yet another method to finding the resultant pressure force and center of pressure relies on calculating
the center of area of the wall surface and calculating moments of inertia. This approach isn’t
described in these notes since it’s a more “formulaic” approach and is less connected to the actual
physics of the problem. Moreover, this moment-of-inertia approach often requires access to moment
of inertia tables, which may be inconvenient. A number of texts that discuss fluid statics present
this “moments-of-inertia” approach, but it’s not this author’s preferred method.
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Calculate the net horizontal pressure force acting on the half cylinder shown below.  The half cylinder has radius R 
unit depth into the page, and the gage pressure acting on it is p0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
We can determine the net horizontal pressure force in two ways.  The first method directly integrates the horizontal 
pressure force components over the entire surface and the second method uses the surface’s projected area. 
 
Method 1:  Integrate the horizontal pressure force components over the entire surface area. 

 (1) 

 (2) 

 (3) 
 
 
 

Method 2:  Multiply the pressure with the surface’s area projected in the x-direction. 
 
The small amount of horizontal pressure force dFp,x due to the pressure p0 
acting on a small area dA inclined at an angle q as shown in the figure to  
the right is,  

 (4) 

 
By grouping terms, we see that horizontal pressure force is equivalent to multiplying the pressure by the area 
projected in the horizontal direction, dA’, i.e., the area of the surface viewed from the x-direction. 

 (5) 

 
Thus, the horizontal pressure force acting on the half-cylinder is simply the pressure multiplied by the cylinder’s 
horizontal projected area, 2R, 

   (This is the same result as before!) (6) 
 

   

dFp,x = p0 Rdθ
=dA


=dFp

 
sinθ

( ), , 0 0 0 00
0 0 0

sin sin cos 1 1p x p xF dF p Rd p R d p R p R
q p q p q p

p

q q q

q q q q q
= = =

= = =

= = = = - = - - -ò ò ò
( ), 0 2p xF p R\ =

   

dFp,x = p0dA
=dFp

 sinθ

   
dFp,x = p0 dAsinθ

=d ′A
 

( ), 0 2p xF p R\ =

R 
q p0 x 

p0 dA 
q 

q 
dA’ = dAsinq 
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Video solution: https://www.youtube.com/watch?v=8r3cn72-ai0
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The figure shows a Tainter gate used to control water flow from a dam.  The gate radius is R = 20 m, the gate width 
is w = 35 m, and the water depth is H = 10 m.  Determine the force components, magnitude, and line of action of the 
force that the water exerts on the gate.  
 

 
 

 
 
 
 
 
 
 
 
SOLUTION: 
 
First determine the force components acting on the gate, 

! = ∫ $(−'()!"#
!"$ = ∫ (*+,)[−(.'/012%)]!"#

!"$ , (1) 

! = ∫ (*+. sin /)(−.'/012%)&"&!
&"$ , (2) 

where, 
sin /' = #

(  =>  /' = sin)* 7#(8, (3) 
12% = cos / ;̂ + sin / >.̂ (4) 
 

Substitute and simplify, 
! = ∫ (*+. sin /)[−.'/0(cos / ;̂ + sin / >̂)]&!

$ , (5) 
! = −*+.+0∫ (sin / cos / '/;̂ + sin+ / '/>̂)&!

$ , (6) 
! = −*+.+0 ?7*+ sin

+ /'8 ;̂ + @*+/' −
*
, sin(2/')B >̂C, (7) 

D- = − *
+*+.

+0 sin+ /', (8) 

D! = − *
+*+.

+0 @/' − *
+ sin(2/')B, (9) 

D- = − *
+*+.

+07#(8
+
  =>  D- = − *

+*+E
+0. (10) 

D! = − *
+*+.

+0 @/' − *
+ sin(2/')B  (where qM is given in Eq. (3)). (11) 

 
Using the given data, 

r = 1000 kg/m3, 
g = 9.81 m/s2, 
w = 35 m, 
H = 10 m, 
R  =  20 m, 
=> Fx = -17.2 MN and Fy =  -6.22 MN 

and the force magnitude is |F| = 18.3 MN.  The angle from the horizontal is, 
tan /./ =

0"
0#

,  (refer to the figure to the right) (12) 

qCP = 19.9° 
Note that the resultant force will pass through the center of the circle (the hinge) since the pressure force acts normal 
to the surface. 
 
 

 
 

 

R 
q y = Rsinq 

'( = .'/012% 

x 
y 

 

H 
R 

water 
gate 

R 
H 

qM 

H.+ −E+ 

H 
R 

water 
gate 

Fx 

Fy 

qCP 

|F| 
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A spring-loaded hinge is designed to hold closed the sinusoidally-shaped gate shown in the figure (assume 
unit depth into the page).  The wavelength of the gate shape is l and its amplitude is a.  The water depth is 
H < a. liquid in the figure is water.  Determine the horizontal and vertical components of the force acting in 
the hinge due to the gate, as well as the moment the hinge must supply to keep the gate in the configuration 
shown.  You may neglect the weight of the gate in your calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
First determine the water force acting on the gate. 

, (1) 

where 
, (2) 

. (3) 
Substituting Eqs. (2) and (3) into Eq. (1) gives, 

, (4) 

Split the integral into two parts:  one concerning the vertical force component and one concerning the 
horizontal force component.  The integral limits for the horizontal force component are simply y = 0 to y = 
H.  The integral limits for the vertical force component are x = 0 to x = L, where L may be found by noting 
that the gate is sinusoidal in shape,  

  Þ  . (5) 

Thus, Eq. (4) may be written as, 

, (6) 

, (7) 

where Eq. (5) has been used to substitute in for y.  Evaluating the integrals in Eq. (7) gives, 

F = − pdA
A
∫

p = ρg H − y( )
dA = dy 1( ) î − dx 1( ) ĵ

F = − ρg H − y( ) dy 1( ) î − dx 1( ) ĵ⎡⎣ ⎤⎦
A
∫

y = asin 2π x
λ

⎛
⎝⎜

⎞
⎠⎟ L = λ

2π
sin−1 H

a
⎛
⎝⎜

⎞
⎠⎟

F = − îρg H − y( )dy
y=0

y=H

∫ + ĵρg H − y( )dx
x=0

x=L

∫

F = − îρg H − y( )dy
y=0

y=H

∫ + ĵρg H − asin 2π x
λ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

x=0

x=L

∫

H 

a 

¼ l hinge 

H y 

hinge x 

L 

dA 
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, (8) 

, (9) 

where L is given in Eq. (5).  Note that these are the forces acting on the gate due to the water.  The forces 
acting on the hinge would have the same magnitude, but opposite sign, 

. (10) 

 
The horizontal pressure force is the same pressure force that’s exerted on the horizontal, projected area of 
the gate,   
 
 
 
 
 
 
 

 
 

. (11) 

 
The vertical pressure force could have also been found by balancing forces on the fluid contained within 
the span from x = 0 to x = L, 

 
 

 
 
 
 
 
 
 

, (12) 
where the rgHL(1) term is the (uniform) pressure force acting on the bottom of the section of fluid under 
consideration.  The weight of the fluid in the section is given by, 

. (13) 

Combining Eqs. (12) and (13) and solving for Fy gives, 

, (14) 

which is the same as the expression found previously. 
 
  

F = − îρg Hy − 1
2 y

2( )y=0
y=H

+ ĵρg Hx + aλ
2π
cos 2π x

λ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥x=0

x=L

F = − î 12 ρgH
2 + ĵρg HL − aλ

2π
1− cos 2π L

λ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

Fhinge = î 12 ρgH
2 − ĵρg HL − aλ

2π
1− cos 2π L

λ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

Fx = − ρg H − y( )dy 1( )
y=0

y=H

∫ = − 1
2 ρgH

2

Fy∑ = 0 = −Fy −W + ρgHL 1( )

W = ρg ydx 1( )
x=0

x=L

∫ = ρg asin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟ dx 1( )

x=0

x=L

∫ = ρg aλ
2π

1− cos 2π
λ
L⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Fy = ρgHL − ρg aλ
2π

1− cos 2π
λ
L⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= ρg HL − aλ

2π
1− cos 2π

λ
L⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

H y 

hinge 

x 

H y 

hinge x 

L 

Fy 

W 
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The moment exerted by the hinge may be found by summing moments at the hinge, 
, (15) 

where 
, (16) 

. (17) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting these relations into Eq. (15) and simplifying gives, 
, (18) 

, (19) 

, (20) 

where Eq. (5) has been substituted in for y in the first integral.  Solving the integrals in the previous 
equation gives, 

, (21) 

, (22) 

. (23) 

  

Mhinge∑ = 0 =Mhinge + r × dFp
A
∫

r = xî + yĵ

dFp = − pdA = −ρg H − y( ) dy 1( ) î − dx 1( ) ĵ⎡⎣ ⎤⎦

Mhinge = − xî + yĵ( )× −ρg H − y( ) dy 1( ) î − dx 1( ) ĵ⎡⎣ ⎤⎦
A
∫ = ρgk̂ H − y( ) −xdx − ydy( )

A
∫

Mhinge = −ρgk̂ H − y( ) xdx + ydy( )
A
∫

Mhinge = −ρgk̂ H − asin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
xdx( )

x=0

x=L

∫ + H − y( ) ydy( )
y=0

y=H

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Mhinge = −ρgk̂ 1
2 HL

2 − asin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟ xdx

x=0

x=L

∫ + 1
6 H

3⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Mhinge = −ρgk̂ 1
2 HL

2 − λ
2π

⎛
⎝⎜

⎞
⎠⎟
2

sin 2π
λ
x⎛

⎝⎜
⎞
⎠⎟ −

λ
2π

⎛
⎝⎜

⎞
⎠⎟ x cos

2π
λ
x⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x=0

x=L

+ 1
6 H

3
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Mhinge = −ρgk̂ 1
2 HL

2 − λ
2π

⎛
⎝⎜

⎞
⎠⎟
2

sin 2π
λ
L⎛

⎝⎜
⎞
⎠⎟ +

λL
2π

⎛
⎝⎜

⎞
⎠⎟ cos

2π
λ
L⎛

⎝⎜
⎞
⎠⎟ +

1
6 H

3⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

H y 

hinge x 

L 

dA 

r 
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