

Local velocity measurement: Pitot's tube

Volume-flow (mass-flow) measurements:

The mechanical instruments measure actual mass or volume of fluid by trapping it and counting it, i.e., *direct measurement*. The various types of measurement are:

- 1. Mass measurement
 - a. Weighing tanks
 - b. Tilting traps
- 2. Volume measurement
 - a. Volume tanks
 - b. Reciprocating pistons (Positive displacement flowmeters)
 - c. Rotating slotted rings
 - d. Nutating disk
 - e. Sliding vanes
 - f. Gear or lobed impellers
 - g. Reciprocating bellows
 - h. Sealed-drum compartments

The last three of these are suitable for gas flow measurement.

Nutating disk

Rotating lobe

Household water meter

Volume-flow (mass-flow) measurements:

The head-loss devices obstruct the flow and cause a pressure drop which is a measure of flux:

- 1. Bernoulli-type devices
 - a. Thin-plate orifice
 - b. Flow nozzle
 - c. Venturi tube

Flow Meter Type	Diagram	Head Loss	Initial Cost
Orifice	$D_1 \xrightarrow{D_t} Flow$	High	Low
Flow Nozzle	$D_1 \longrightarrow D_2 \xrightarrow{\text{Flow}}$	Intermediate	Intermediate
Venturi	D_1 D_2 Flow	Low	High

Principle of operation Bernoulli restriction/obstruction meters:

Standard designs

Fig. 6.39 International standard shapes for the three primary Bernoulli obstruction-type meters: (*a*) long radius nozzle; (*b*) thinplate orifice; (*c*) venturi nozzle.

Correlations for C_D and β :

Concentric orifice:

$$\begin{split} C_D &= 0.5959 + 0.0312\beta^{2.1} - 0.184\beta^8 + 91.71\beta^{2.5}Re_D^{-0.75} \\ &+ \frac{0.09\beta^4}{1-\beta^4}F_1 - 0.0337\beta^3F_2 \end{split}$$

- 1) Corner taps: $F_1 = 0$; $F_2 = 0$
- 2) **D**: $\frac{1}{2}$ **D** taps: $F_1 = 0.4333$; $F_2 = 0.47$
- 3) Flange taps:

$$F_2 = \frac{1}{D \text{ (in)}}$$
 $F_1 = \begin{cases} \frac{1}{D \text{ (in)}} & D > 2.3 \text{ in} \\ 0.4333 & 2.0 \le D \le 2.3 \text{ in} \end{cases}$

Long radius flow nozzle:
$$C_D = 0.9975 - \frac{6.53\beta^{0.5}}{Re_D^{0.5}}$$

Venturi meter: $C_d \approx 0.9858 - 0.196 \beta^{4.5}$

Non-recoverable Losses:

Volume-flow (mass-flow) measurements:

Six other widely used meters operate on different physical principles:

- 1. Turbine meter
- 2. Vortex meter
- 3. Ultrasonic flowmeter
- 4. Rotameter
- 5. Coriolis mass flowmeter
- 6. Laminar flow element

References:

The images and plots used in these notes are taken from:

- 1) Google images
- 2) Fox, Robert W., Alan T. McDonald, and John W. Mitchell. Fox and McDonald's introduction to fluid mechanics. John Wiley & Sons, 2020.
- 3) White, Frank M. "Fluid mechanics." (2010).