
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

7.4. Dimensionless Form of the Governing Equations

Consider the dimensional form of the governing equations for an incompressible, Newtonian fluid with con-
stant viscosity in a gravity field:
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Thermal Energy Equation:⇢c

✓
@T

@t
+ uj

@T

@xj

◆
= k

@2T

@xj@xj
+ µ

✓
@uj

@xi
+

@ui

@xj

◆✓
@ui

@xj

◆
(7.52)

Note that in the thermal energy equation the internal energy has been written as the specific heat (assumed
constant, since for an incompressible fluid cv = cp = c) multiplied by the temperature and the heat transfer
has been assumed to be due solely to conduction (Fourier’s Law with a constant conduction coe�cient, k).
Let’s re-write these equations in dimensionless form using some characteristic quantities. The variables in
the equations are made dimensionless in the following manner:

x⇤
i :=

xi

L
=) xi = Lx⇤

i , (7.53)

@

@x⇤
i

:= L
@

@xi
=) @

@xi
=

1

L

@

@x⇤
i

, (7.54)

u⇤
i :=

ui

U
=) ui = Uu⇤

i , (7.55)

t⇤ :=
t

⌧
=) t = ⌧ t⇤, (7.56)

p⇤ :=
p

p0
=) p = p0p

⇤, (7.57)

T ⇤ :=
T

T0
=) T = T0T

⇤, (7.58)

where the superscript “*” refers to a dimensionless quantity. The quantity L represents a characteristic
length for the flow of interest (e.g., a pipe diameter or the diameter of a sphere), U is a characteristic velocity
(e.g., the free stream velocity or the average velocity in a pipe), ⌧ is a characteristic time scale (e.g., the
period of an oscillating boundary), p0 is a characteristic pressure (e.g., the free stream pressure or the vapor
pressure), and T0 is a characteristic temperature (e.g., the free stream temperature). These characteristic
quantities give us an estimate of the typical magnitude of the various terms in the equations. They give us
insight into how a parameter might scale in a flow, e.g., we might expect the fluid velocities in a flow to scale
with the incoming free stream velocity.

Now let’s rewrite the governing equations using these dimensionless parameters. First start with the Conti-
nuity Equation,
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Thus, the dimensionless Continuity Equation looks identical to the dimensional Continuity Equation. Now
examine the Navier-Stokes Equations,
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A dimensional quantity in front of a term represents a particular characteristic force per unit volume, i.e.,
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⇢U2

L
:=characteristic convective inertial force per unit volume, (7.65)
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L

:=characteristic pressure force per unit volume, (7.66)

µU

L2
:=characteristic viscous force per unit volume, (7.67)

⇢g :=characteristic weight per unit volume. (7.68)

In order to make the Navier-Stokes equation dimensionless, the convention is to divide through by the
characteristic convective inertial force per unit volume term (⇢U2/L),
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where ĝi is a unit vector pointing in the direction of the gravitational acceleration. This equation is now
dimensionless. Furthermore, the quantities in parentheses in front of each term are characteristic force ratios,
which are given special names:

• Strouhal number, St = L
⌧U . Represents the ratio of characteristic (local or Eulerian) inertial forces

to characteristic convective inertial forces. The Strouhal number is often significant in unsteady,
periodic flows.

• Euler number, Eu = p0

⇢U2 . Represents the ratio of a characteristic pressure forces to characteristic
convective inertial forces. The Euler number is typically significant in flows where large changes in
pressure occur. The Euler number is also often written as a pressure coe�cient, cP ,
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or in flows where cavitation occurs, as the cavitation number, Ca,
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where pv is the vapor pressure of the liquid.
• Reynolds number, Re = ⇢UL

µ . Represents the ratio of characteristic convective inertial forces to
characteristic viscous forces. The Reynolds number is significant in virtually all fluid flows.

• Froude number, Fr = Up
gL

. Represents the ratio of characteristic convective inertial forces to

characteristic gravitational forces. The Froude (pronounced “’früd”) number is typically significant
in flows involving a free surface.
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Finally, let’s make the Thermal Energy Equation dimensionless following the same procedure,
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The expressions in parentheses in front of each term has dimensions of M/(LT 3). Now make this equation
dimensionless by dividing through by the quantity in front of the convective acceleration term,
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• Prandtl number, Pr = cµ
k . Represents the ratio of the characteristic momentum di↵usivity, ⌫ = µ/⇢,

to the characteristic thermal di↵usivity, k/(⇢c). The Prandtl number gives a measure of how rapidly
momentum di↵uses through a fluid compared to the di↵usion of heat. Most gases have a Prandtl
number near one (heat and momentum di↵use at nearly the same rate) while water has a Prandtl
number near ten (momentum di↵uses faster than heat).

• Eckart number, Ec = U2

cT0

. Represents the ratio of the characteristic specific macroscopic kinetic

energy, U2, to the characteristic specific internal energy, cT0. When the Eckart number divided by
the Reynolds number is small, i.e., Ec/Re ⌧ 1, then the change in the fluid energy due to viscous
dissipation can be neglected and the thermal energy equation becomes a balance between advection
and conduction.

Additional dimensionless quantities occur when dealing with other equations of significance, e.g., the equa-
tions for a compressible fluid, and with the boundary conditions, e.g., surface tension e↵ects or surface
roughness.
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The differential equation for small-amplitude vibrations of a simple beam is given by: 

 

where 
y º vertical displacement of beam 
x º horizontal position 
t º time 
r º beam material density 
A º cross-sectional area 
I º area moment of inertia 
E º Young’s modulus 

 
Rewrite the differential equation in dimensionless form.  Discuss the physical significance of any 
dimensionless terms in the resulting equation. 
 
 
SOLUTION: 
 
Re-write the variables y, x, and t in dimensionless form using other variables in the equation where [y] = L, 
[x] = L, and [t] = T.  Use r, A, and E as repeating variables where [r] = M/L3, [A] = L2, and [E] = F/L2 = 
M/(LT2). 

   OK! (1) 

   OK! (2) 

   OK! (3) 

 
Substitute into the original PDE. 

 

 

 

 (4) 

The term I/A2 is a dimensionless geometric parameter. 
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Video solution: https://www.youtube.com/watch?v=XJ4aFij8U3Y
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Note that if we let: 
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 (7) 

then: 
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Video solution: https://www.youtube.com/watch?v=XJ4aFij8U3Y
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