
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

5.2. The Continuity Equation (aka Conservation of Mass for a Di↵erential Control Volume)

The Continuity Equation, which is Conservation of Mass for a di↵erential fluid element or control volume,
can be derived several di↵erent ways. Two of these methods are given in this section.

Method 1: Apply the integral approach to the fixed di↵erential control volume shown in Figure 5.4. Assume

Figure 5.4. The control volume used to derive the Continuity Equation.

that the density and velocity are ⇢ and u, respectively, at the control volume’s center. Using a Taylor series
approximation, the mass flow rate through the left side of the control volume is given by,
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where ṁx,center is the mass flow rate in the x-direction at the center of the control volume. A similar approach
can be used to find the mass flow rates through the other sides of the control volume,
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ṁout through top =


⇢uy +

@

@y
(⇢uy)

✓
1

2
dy

◆�
(dxdz) , (5.39)
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Thus, the net mass flow rate into the control volume is,
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The rate at which mass increases within the control volume is,
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where ⇢ is the density at the center of the control volume. Note that since the density varies linearly within
the control volume (from the Taylor Series approximation), the average density in the control volume is ⇢.
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Conservation of Mass states that the rate of increase of mass within the control volume must equal the net
rate at which mass enters the control volume,
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= �ṁnet, into CV, (5.44)
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Written in a more compact form,

@⇢

@t
+r · (⇢u) = 0 , (5.47)

or, in index notation,
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Method 2: Recall that the integral form of Conservation of Mass is given by,
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Consider a fixed control volume so that,
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By utilizing Gauss’ Theorem (aka the Divergence Theorem), we can convert the area integral into a volume
integral, ˆ
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Substitute these expressions back into Conservation of Mass to get,ˆ
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Since the choice of control volume is arbitrary, the kernel of the integral must be zero, i.e.,
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which is the same result found previously.

Notes:

(1) For a fluid in which the density remains uniform and constant, i.e., ⇢ = constant, the Continuity
Equation simplifies to,

r · u = 0 or
@ui

@xi
= 0 . (5.54)

(2) An incompressible fluid is one in which the density of a particular piece of fluid remains constant,
i.e.,

D⇢

Dt
= 0 . (5.55)

Note that an incompressible fluid does not necessarily imply that the density is the same everywhere
in the flow, i.e. it’s not necessarily uniform. An example of such a flow would be a stratified flow in
the ocean where the density of various layers of ocean water varies due to salinity and temperature
variations (Figure 5.5). A fluid with a constant and uniform density, however, is an incompressible
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Figure 5.5. The density of fluid particles varies from layer to layer in this stratified flow,
but remains constant within a layer.

fluid.
The Continuity Equation for an incompressible fluid can be found by using Eq. (5.55),
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Substituting into the Continuity Equation,
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Thus, an incompressible fluid has the same Continuity Equation as a fluid with constant and uniform
density.

(3) Another useful form of the Continuity Equation is,

@⇢

@t
+

@

@xi
(⇢ui) = 0 =) @⇢

@t
+ ui

@⇢

@xi| {z }
=D⇢

Dt

+⇢
@ui

@xi
, (5.61)

D⇢

Dt
= �⇢

@ui

@xi
. (5.62)

(4) The Continuity Equation (Eq. (5.53)) is valid for any continuous substance, e.g., a solid as well as
a fluid.

(5) Equation (5.54) is referred to as the conservative form of the Continuity Equation while Eq. (5.62)
is the non-conservative form. The conservative form implies that the equation represents an Euler-
ian viewpoint of the Continuity Equation. The non-conservative form represents the Lagrangian
viewpoint.
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The y-velocity component of a steady, 2D, incompressible flow is given by: 
 

Determine the most general velocity component in the x-direction for this flow. 
 
 
SOLUTION: 
 
Consider the continuity equation: 

 (1) 

 

Integrate ux with respect to x. 
 (2) 

where f(y) is an unknown function of y. 
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Video solution: https://www.youtube.com/watch?v=mkseNuP3pPg
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A piston compresses gas in a cylinder by moving at a constant speed, V.  The gas density and the piston 
length are initially r0 and L0, respectively.  Assume that the gas velocity varies linearly from velocity, V, at 
the piston face to zero velocity at the cylinder wall (at L).  If the gas density varies only with time, 
determine r(t). 
 
 
 
 
 
 
 
 
SOLUTION: 
 
As given in the problem statement, assume the gas velocity, u, varies linearly with distance x from the 
piston face with the boundary conditions:  u(x = 0) = V and u(x = L(t)) = 0. 

Þ   (1) 

However, the piston moves at a constant speed so that: 
 (2) 

Substituting Eqn. (2) into Eqn. (1) gives: 

 (3) 

 
Apply the continuity equation assuming 1D flow. 

 (4) 

    (Note that r = r(t).) 
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A velocity field for an incompressible flow is given by 

 

Is this flow physically possible? 

 

 

SOLUTION: 

 

Does the given velocity field satisfy the continuity equation? 

 (1) 

Using the given velocity field: 

 

 

 

Substitute into Eqn. (1). 

 

Hence, the given flow field is not physically possible since it does not satisfy the continuity equation. 
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Video solution: https://www.youtube.com/watch?v=f5ZpSQPcGEY
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Derive the continuity equation in cylindrical coordinates: 

 

 by considering the mass flux through an infinitesimal control volume which is fixed in space. 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let the density and velocity at the center of the control volume be r and u, respectively.  First determine 
the mass fluxes through each side of the control volume. 

 

 

 

 

 

 

 
The net mass flux out of the control volume is: 
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The rate of increase of mass within the control volume is: 

 (2) 

 
From conservation of mass, the rate at which the mass inside the control volume increases plus the net rate 
at which mass leaves the control volume must be zero, i.e.: 

 

 

 
Hence: 

 (3) 

or, by combining the 2nd and last terms on the LHS: 

 (4) 
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The x-velocity component of a steady, 2D, incompressible flow is given by: 
 

Determine the most general velocity component in the y-direction for this flow. 
 
 
SOLUTION: 
 
Consider the continuity equation: 

 (1) 

 

Integrate uy with respect to y. 
 (2) 

where f(x) is an unknown function of x. 
 
Double check: 

 (3) 

 (4) 

   OK! (5) 
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Video solution: https://www.youtube.com/watch?v=fU0Ohc8_YcA
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