
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

2.4. Buoyant Force and Center of Buoyancy

When an object is submerged in a fluid, the pressure acting on the object deeper in the fluid (i.e., in the
direction of gravity) will be larger than the pressure acting on the object shallower in the fluid. As a result,
there will be a net pressure force acting on the object. This net pressure force is known as the buoyant force.

To derive the value of the buoyant force, consider the vertical pressure forces acting on a narrow cylinder
with cross-sectional area dA within a fully-submerged object as shown in Figure 2.17.

Figure 2.17. Pressure forces on a thin cylinder of cross-sectional area dA and height l from
within a fully-submerged object.

The net pressure force in the vertical direction on the narrow cylinder, assuming an incompressible fluid, is,

dFp,net = (p+ ⇢fluidgl)dA� pdA = ⇢fluidgldA (acting opposite to gravity). (2.78)

The total net pressure force acting on the object is found by integrating these small bits of pressure force
over the entire cross-sectional area of the object,

Fp,net =

ˆ
A
dFp,net =

ˆ
A
⇢fluidgldA (acting opposite to gravity). (2.79)

Since the density and gravity are assumed constant here, they may be pulled outside the integral,

Fp,net = ⇢fluidg

ˆ
A
ldA (acting opposite to gravity), (2.80)

= ⇢fluidg

ˆ
V
dV (acting opposite to gravity), (2.81)

Fp,net = FB = ⇢fluidgVsubmerged
object

(acting opposite to gravity), (2.82)

where the integral is simply the volume of the submerged object. This net pressure force acting on the object
is referred to as the buoyant force.

Notes:

(1) Equation (2.82) states that the buoyant force is equal to the weight of the fluid that’s been displaced
by the submerged object. This relationship is also known as Archimede’s Principle.

(2) The same analysis can be used for partially submerged objects. In that case, the pressure acting
on the top of the object is atmospheric pressure while the pressure at the bottom is patm + ⇢fluidgl0,
where l0 is the length of the narrow cylinder that’s submerged in the fluid (Figure 2.18). After
integrating over the objects cross-sectional area (similar to Eq. (2.80), we would arrive at exactly
the same relation as in Eq. (2.82) except that the Vsubmerged object refers to just that volume that is
submerged in the fluid.
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Figure 2.18. Pressure forces on a thin cylinder of cross-sectional area dA. The depth of
the cylinder below the free surface is l0.

(3) There is no net pressure force on the object in the directions perpendicular to gravity since the
pressure only varies parallel to the gravitational vector.

The resultant buoyant force acts at the center of buoyancy. The center of buoyancy is found by equating the
moment caused by the resultant buoyant force acting at the center of buoyancy to the distributed moment
caused by the distributed pressure forces. Consider moments about the z axis in Figure 2.19.

Figure 2.19. Moments about the z axis due to the pressure forces acting on a thin cylinder
of cross-sectional area dA and height l from within a fully-submerged object.

xCB î⇥ ⇢gV ĵ| {z }
buoyant
force

=

ˆ
A
xî⇥ ⇢gldAĵ| {z }

net pressure force
on cylinder

, (2.83)

xCB⇢gV k̂ = ⇢gk̂

ˆ
A
xdV (dV = ldA), (2.84)

xCB =
1

V

ˆ
V
xdV, (2.85)

which is the center of displaced volume. Performing similar analyses about the x and y axes produces similar
results. Thus, the center of buoyancy is located at the center of the displaced volume. This is true for both
fully submerged and partially submerged objects.
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2.5. Stable Orientation of a Submerged Object

Submerged objects will be in an equilibrium orientation when the forces acting on the object are such
that there is no net moment on the object. Considering only the object weight and a buoyant force, an
equilibrium orientation will only occur when the two forces are co-linear, as shown in Figure 2.20. Neither
object experiences a net moment.

Figure 2.20. The buoyant force, acting at the center of buoyancy, and weight, acting at
the center of gravity, for two fully-submerged objects in equilibrium. The object on the left
is stable, but the object on the right is unstable.

The object on the left is in a stable equilibrium while the object on the right is in an unstable equilibrium.
The reason for the di↵erence is that if each object is rotated slightly, the object on the left will experience a
moment that restores it back to its original configuration. However, a small perturbation to the right-hand
object will result in a moment that will cause the object to move away from its initial configuration.

The stability of partially submerged objects is a particularly important topic when considering the design
of ships. The Swedish ship Vasa is a famous example of a ship that was unstable and “turtled” shortly
after setting sail for the first time. Unfortunately, stability analysis of partially submerged objects can be
complicated since the submerged volume and center of buoyancy changes as the orientation of the object
rotates. For example, consider the stability of the simple shape shown in Figure 2.21 (CG is the center of
gravity and CB is the center of buoyancy). The initial configuration of the object (on the left) appears to be

Figure 2.21. The center of buoyancy and center of gravity for a partially-submerged object.
The center of buoyancy changes location as the submerged volume changes.

in unstable equilibrium with the center of gravity above the center of buoyancy. However, when the object
is tilted (on the right), the center of buoyancy shifts to one side such that it acts to restore the object to its
initial configuration. Hence, the object is actually initially in stable equilibrium.
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A tank is divided by a wall into two independent chambers.  The left chamber is filled to a depth of HL=6m 
with water (rH20=1000 kg/m3) and the right side if filled to a depth of HR=5m with an unknown fluid.  A 
wooden cube (SGwood=0.6) with a length of L=0.20m on each side floats half submerged in the unknown 
fluid.  Air (rair=1.2 kg/m3) fills the remainder of the container above each fluid.  The right container has a 
pipe that is vented to the atmosphere while the left container is sealed from the atmosphere.  A manometer 
using mercury as the gage fluid (SGHg=13.6) connects the two chambers and indicates that h=0.150 m. 
a. Determine the density of the unknown fluid. 
b. Determine the magnitude of the force (per unit depth into the page) acting on the dividing wall due 

to the unknown fluid. 
c. Determine the magnitude of the force (per unit depth into the page) acting on the dividing wall due 

to the water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Balance forces on the wooden cube. 

 (1) 

 (2) 
Using the given data: 

SGwood = 0.6 
rH2O = 1000 kg/m3 
Þ  rfluid = 1200 kg/m3 
 

( ) 2 31
fluid wood20yF g L L gLr r= = -å

2fluid wood wood H O2 2SGr r r\ = =

wooden cube (SGwood=0.6)  
of length L on a side 

h 

HL water 
unknown fluid 

L 

½ L 

HR 

air air 

mercury (SGHg=13.6) 

dividing wall 

vent to the atmosphere (patm = 101 kPa (abs)) 
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Now determine the force acting on the wall due to the unknown fluid. 

 (3) 

 (4) 
Using the given data: 

patm = 101 kPa (abs) 
HR = 5 m 
rfluid = 1200 kg/m3 
g = 9.81 m/s2 
Þ  Fp,R  = 506 kN/m 
 

Now find the pressure force due to the water. 

 (5) 

 (6) 
where pL is the (absolute) pressure acting on the free surface of the water.  This pressure may be found 
using the manometer. 

 (7) 

Substitute Eqn. (7) into Eqn. (6). 

 (8) 

Using the given data: 
patm = 101 kPa (abs) 
SGHg = 13.6 
rH2O = 1000 kg/m3 
g = 9.81 m/s2 
h = 0.150 m 
HL = 6 m 
Þ  Fp,L  = 903 kN/m 
 

( )
( )

( )!, atm fluid
0  abs

1
Ry H

p R
y dAp

F p gy dyr
=

= ==

= +ò "##$##%
21

, atm fluid2p R R RF p H gHr\ = +

( )
( )

( )!2, H O
0  abs

1
Ly H

p L L
y dAp

F p gy dyr
=

= ==

= +ò "##$##%

2

21
, H O2p L L L LF p H gHr\ = +

H O2atm Hg atm HgLp p gh p SG ghr r= + = +

( )H O 22

21
, atm Hg H O2p L L LF p SG gh H gHr r\ = + +

h 

mercury (SGHg=13.6) 

patm pL 
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A hydrometer is a specific gravity indicator, the value being indicate by the level at which the free 
surface intersects the stem when floating in a liquid.  The 1.0 mark is the level when in distilled 
water.  For the unit shown, the immersed volume in distilled water is 15 cm3.  The stem is 6 mm in 
diameter.  Find the distance, h, from the 1.0 mark to the surface when the hydrometer is placed in a 
nitric acid solution of specific gravity 1.5. 
 
 
 
 
 
 
SOLUTION: 
Since the hydrometer is in equilibrium, its weight and the buoyant force should equal each other.  When submerged 
in distilled water, 

! = #!"#$%$%&',!"# = #!"#$ℎ )* '
"  =>  ℎ = +

,!"#-$%$"
, (1) 

where A is the hydrometer’s cross-sectional area.  The height h is the location where the mark is made for distilled 
water. 
 
When submerged in nitric acid, 

! = #!.#&$
)
* '

"(ℎ + Δℎ)  =>  ℎ + Δℎ = +
,!'#&-

$
%$"

= +
/0!'#&,!"#-

$
%$"

. (2) 

Combining Eqs. (1) and (2), 
+

,!"#-$%$"
+ Δℎ = +

/0!'#&,!"#-
$
%$"

, (3) 

Δℎ = +
/0!'#&,!"#-

$
%$"

− +
,!"#-$%$"

, (4) 

Δℎ = +
,!"#-$%$"

- 1
/0!'#&

− 1/, (5) 

Δℎ = ,!"#-2()*+,!"#
,!"#-$%$"

- 1
/0!'#&

− 1/, (6) 

Δℎ = 2()*+,!"#
$
%$"

- 1
/0!'#&

− 1/. (7) 

 
Using the given data, 

Vdisp,H2O = 15 cm3, 
d = 0.6 cm, 
SGHNO3 = 1.5, 
=>  Dh = -17.7 cm. 

The hydrometer moves upward a distance of 17.7 cm from where the distilled water mark is located. 
 
 
 
 

 
 

 

Problem *3.89 [Difficulty: 2]

Given: Hydrometer as shown, submerged in nitric acid. When submerged in
water, h = 0 and the immersed volume is 15 cubic cm.
SG 1.5= d 6 mm⋅=

Find: The distance h when immersed in nitric acid.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g⋅ Vd⋅= (Buoyant force is equal to weight of displaced fluid)

Assumptions: (1) Static fluid
(2) Incompressible fluid

Taking a free body diagram of the hydrometer: ΣFz 0= M− g⋅ Fbuoy+ 0=

Solving for the mass of the hydrometer: M
Fbuoy

g
= ρ Vd⋅=

When immersed in water: M ρw Vw⋅= When immersed in nitric acid: M ρn Vn⋅=

Since the mass of the hydrometer is the same in both cases: ρw Vw⋅ ρn Vn⋅=

When the hydrometer is in the nitric acid: Vn Vw
π
4

d2
⋅ h⋅−= ρn SG ρw⋅=

Therefore: ρw Vw⋅ SG ρw⋅ Vw
π
4

d2
⋅ h⋅−§̈

©
·̧
¹

⋅= Solving for the height h:

Vw SG Vw
π
4

d2
⋅ h⋅−§̈

©
·̧
¹

⋅= Vw 1 SG−( )⋅ SG−
π
4
⋅ d2

⋅ h⋅=

h Vw
SG 1−

SG
§̈
©

·̧
¹

⋅
4

π d2
⋅

⋅= h 15 cm3
⋅

1.5 1−
1.5

§̈
©

·̧
¹

u
4

π 6 mm⋅( )2
u

u
10 mm⋅

cm
§̈
©

·̧
¹

3
u= h 177 mm⋅=

   Problem 3.69

3.69

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 162 2021-12-15



  buoyancy_08 

 Page 1 of 1 

A uniform block of steel (with a specific gravity of 7.85) will “float” at a mercury-water interface as shown 

in the figure.  What is the ratio of the distances a and b? 

 

 

 

 

 

 

 

 

 

 

 

SOLUTION:  

 

Balance forces in the vertical direction, 

, (1) 

where the buoyant forces are equal to the weights of the displaced fluids. 

 

Re-writing in terms of the lengths a and b and the block’s cross-sectional area Ablock, 
, (2) 

, (3) 

, (4) 

, (5) 

. (6) 

 

Using the given data, 

SGHg = 13.6 

SGsteel = 7.85 

Þ  a/b = 0.83 

 

Note that we could also solve this problem by balancing the block’s weight with the pressure forces acting 

on the top and bottom block surfaces. 

, (7) 

where H is the depth of the water-mercury interface.  Simplifying this equation gives, 

, (8) 

, (9) 

which is exactly the same as Eq. (3). 

FV∑ = 0 = −Wblock + FB,Hg + FB,H2O
= −ρblockVblockg + ρHgVblock,

in Hg
g + ρH2O

Vblock,
in H2O

g

−ρblockAblock a + b( ) + ρHgAblockb + ρH2O
Ablocka = 0

−ρsteel a + b( ) + ρHgb + ρH2O
a = 0

−ρH2O
SGsteelb

a
b
+1⎛

⎝⎜
⎞
⎠⎟ + ρH2O

SGHg + ρH2O
b a
b
= 0

−SGsteel
a
b
+1⎛

⎝⎜
⎞
⎠⎟ + SGHg +

a
b
= 0

a
b
=
SGHg − SGsteel

SGsteel −1

FV∑ = 0 = −Wblock + Fp,H2O
+ Fp,Hg = −ρblockAblock a + b( )g − ρH2O

g H − a( )Ablock + ρH2O
gH + ρHggb( )Ablock

−ρblock a + b( )− ρH2O
H − a( ) + ρH2O

H + ρHgb = 0

−ρblock a + b( ) + ρH2O
a + ρHgb = 0

a 
b 

water 

mercury 

steel block 
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Archimedes principle states that the buoyant force acting on a submerged object is equal to the weight of 

the fluid displaced by that object.  Is this true for compressible fluids?   

 

 

SOLUTION: 

Consider an arbitrary object immersed in a compressible fluid as shown in the figure below. 

 

 

 

 

 

 

 

Determine the net pressure force acting on a parallelpiped of the material with a differential cross-sectional 

area, 

, (1) 

where, 

, (2) 

and, 

, (3) 

where r is the density of the fluid (not the object). 

 

Equation (1) becomes, 

, (4) 

. (5) 

 

The net pressure force acting over the entire object, i.e., the buoyant force, is, 

. (6) 

Assuming that the gravitational acceleration is constant (usually a good assumption), 

, (7) 

Note that the integrals in the previous equation give the mass of the fluid displaced by the object, i.e.,  

. (8) 

Thus, just as with the incompressible case, the buoyant force in a compressible fluid is equal to the weight 

of the fluid displaced by the object, 

. (9) 

( )1 2PdF p p dA= -

  
p1 = pz=0 + ρg dz

z=0

z=z1

∫

  
p2 = pz=0 + ρg dz

z=0

z=z2

∫

  

dFP = pz=0 + ρg dz
z=0

z=z1

∫ − pz=0 − ρg dz
z=0

z=z2

∫
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dA

1

2

z z

P
z z

dF dA gdzr
=

=

= ò

1

2

z z

P P
A A z z

F dF gdzdAr
=

=

= =ò ò ò

  

FP = g ρ dz
z=z2

z=z1

∫
A
∫ dA

  

Mfluid displaced
by object

= ρ dz
z=z2

z=z1

∫
A
∫ dA

		
Fp =Mfluid	displaced

by	object
g

p1dA 

p2dA 

dA g 

z 
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Consider	an	ice	cube	with	initial	volume	Vice,0	floating	in	a	cup	of	water	of	
initial	volume	Vwater,0.		The	specific	gravity	of	ice	is	SGice.		Show	
mathematically	that,	as	the	ice	cube	melts,	the	water	level	in	the	cup	
remains	unchanged.	
	
	
	
	
	
SOLUTION:	
If	a	mass	of	ice,	Dmice,	melts	(Dmice	<	0),	it	will	correspond	to	an	equal	increase	in	water,	Dmwater,	i.e.,	

.	 (1)	
Expressed	in	terms	of	volumes,	

,	 (2)	

.	 (3)	
		

The	volume	of	water	displaced	by	the	ice	is	found	by	equating	the	weight	of	the	displaced	water	to	
the	weight	of	the	ice	(Archimedes	Law),	

,	 (4)	
	 .	 (5)	

Thus,	if	a	volume	of	ice	melts,	DVice,	then	the	amount	of	water	displaced,	in	order	to	balance	the	new	
ice	weight,	is,	

.	 (6)	

Note	that	if	the	ice	melts	(DVice	<	0)	,	less	water	needs	to	be	displaced	to	support	the	(smaller)	ice	
weight	(DVwater,disp	<	0).	
	
Thus,	the	sum	of	the	volume	of	water	added	due	to	melting	and	the	change	in	displaced	water	volume	
due	to	a	change	in	the	weight	of	the	ice	is,	

.	 (7)	
The	increase	in	water	volume	is	exactly	balanced	by	a	decrease	in	the	displaced	water	volume,	which	
means	that	the	water	level	height	won’t	change!	
	
This	fact	has	important	implications	regarding	the	rise	in	sea	level	due	to	melting	ice.		Melting	free-
floating	ice,	e.g.,	icebergs,	won’t	result	in	an	increase	in	sea	level.		However,	ice	that	was	originally	
supported	by	land,	e.g.,	glaciers,	will	contribute	to	an	increase	in	sea	levels.	
	

!!Δmwater = −Δmice

!!ρwaterΔVwater = −ρiceΔVice = −SGiceρwaterΔVice
!!ΔVwater = −SGiceΔVice

!!ρwaterVwater,dispg= ρiceViceg= SGiceρwaterViceg

!!Vwater,disp = SGiceVice

!!ΔVwater,disp = SGiceΔVice

!!ΔVwater +ΔVwater,disp = −SGiceΔVice + SGiceΔVice =0
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Consider the system shown below.  A wooden sphere of radius R and specific gravity SGwood is half 
submerged in an unknown liquid, referred to as liquid A.  Liquid A, which has a depth HA, is separated 
from a pool of water, which has a depth HH2O, by a hinged gate tilted at an angle q with respect to the 
horizontal.  The gate has a width b into the page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. What is the density of liquid A, rA, in terms of the specific gravity of the wooden sphere (SGwood) and 

the density of water (rH20)? 
b. What is the pressure force liquid A exerts on the inclined gate in terms of (a subset of) rA, HA, g, b, and 

q?  Write this force as a vector. 
c. Assuming the gate has negligible mass and the angle q is 90° so the gate is vertical (figure shown 

below), at what height HH20 will the gate just start to rotate about its hinge?  Write this height in terms 
of (a subset of) rA, rH20, HA, g, and b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
The density of liquid A may be found by balancing the weight of the wooden sphere with the buoyant force 
acting on it, 

, (1)  

. (2) 
 

The force that liquid A exerts on the gate may be found by integrating pressure forces along the length of 
the gate, 

, (3) 

where, 
 (gage pressure), (4) 

,  (5) 

 

FW = FB ⇒ ρwood
4
3πR

3g = ρA
1
2

4
3πR

3

half of the
sphere is

submerged

 g⇒ ρA = 2ρwood

ρA = 2SGwoodρH20

FA  on gate = − pdA
A
∫

p = ρAgy

dA = bdyî − bdxĵ

R 

R 

HA 

q 

HH20 

hinge 

liquid A water 

y 

x 

dx 

dy 

q 

L 

HA 

g 

HA 

HH20 
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so that, 

. (6) 

Note that, 
  and  , (7) 

so that Eq. (6) becomes, 

 , (8) 

.  (9) 

 
Another approach to calculating the force on the gate is to balance forces on the triangular block of liquid 
shown in the figure below. 
 
 
 
 
 
 
 
 
 
 

 , (10) 

 , (11) 

where Eq. (7) has been used.  Note that since FA on gate = -Fgate on A, the final result is the same as what was 
found in Eq. (9)! 
 
 
For the specific case when q = 90° (figure shown below), the moments about the hinge are,   
 
 
 
 
 
 

, (12)  

, (13)  

, (14) 

FA  on gate = − ρAgy( ) bdyî − bdxĵ( )
A
∫ = ρAgb − î ydy

y=0

y=HA

∫ + ĵ ydx
x=0

x=L

∫
⎛

⎝
⎜

⎞

⎠
⎟

y = x tanθ HA = L tanθ

FA  on gate = ρAgb − î ydy
y=0

y=HA

∫ + ĵ x tanθ dx
x=0

x=HA tanθ

∫
⎛

⎝
⎜

⎞

⎠
⎟

FA  on gate = − 1
2 ρAgbHA

2 î + 1
2 ρAgb

HA
2

tanθ
ĵ

 

F∑ = 0 = − ρAgy( ) dybî( )
y=0

y=HA

∫
pressure force on side of fluid block
  

+ρAg 1
2 LHAbĵ

weight of fluid block
   + Fgate on A

force gate
exerts on block



Fgate on A = 1
2 ρAgbHA

2 î − 1
2 ρAg

HA
2

tanθ
bĵ

M hinge,z∑ = 0 = − ′y + HA − HH2O( )⎡⎣ ⎤⎦ ρH20g ′y( ) bd ′y( )
′y =0

′y =HH20

∫ + y ρAgy( ) bdy( )
y=0

y=HA

∫

0 = gb −ρH20 ′y 2 + HA − HH2O( ) ′y⎡⎣ ⎤⎦d ′y
′y =0

y=HH2O

∫ + ρA y2 dy
y=0

y=HA

∫
⎛

⎝
⎜

⎞

⎠
⎟

ρH20 1
3HH2O

3 + 1
2 HA − HH20( )HH2O

2⎡⎣ ⎤⎦ =
1
3 ρAHA

3

y 

x 
q 

L 

HA 

Fgate on A 

weight 

x 

HA 

HH2O 

hinge 

y 

y’ 
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, (15) 

, (16) 

. (17) 

This equation could be solved numerically for HH20/HA given a value for rA/rH20.  The following plot shows 
example solutions.  

 
 
An alternate approach for deriving Eq. (17) is to sum moments about the hinge, but make note of the fact 
that the center of pressure on each wall is one-third of the liquid depth from the bottom of the wall, 

, (18) 

, (19) 

, (20) 

, (21) 

which is the same as Eq. (17). 
 
 
 
 
 
 
 
 
 
 
 
 
 

HH20

HA

⎛
⎝⎜

⎞
⎠⎟

3

+ 3
2
1− HH20

HA

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
HH20

HA

⎛
⎝⎜

⎞
⎠⎟

2

= ρA

ρH20

HH20

HA

⎛
⎝⎜

⎞
⎠⎟

3

+ 3
2

HH20

HA

⎛
⎝⎜

⎞
⎠⎟

2

− 3
2

HH20

HA

⎛
⎝⎜

⎞
⎠⎟

3

= ρA

ρH20

HH20

HA

⎛
⎝⎜

⎞
⎠⎟

3

− 3 HH20

HA

⎛
⎝⎜

⎞
⎠⎟

2

+ 2 ρA

ρH20

⎛
⎝⎜

⎞
⎠⎟
= 0

M hinge,z∑ = 0 = − HA − HH2O( ) + 2
3 HH2O⎡⎣ ⎤⎦

1
2 ρH2OgbHH2O

2( ) + 2
3 HA( ) 1

2 ρAgbHA
2( )

1
2 ρH2OHH2O

2 HA − 1
6 ρH2OHH2O

3 = 1
3 ρAHA

3

3 HH2O

HA

⎛
⎝⎜

⎞
⎠⎟

2

− HH2O

HA

⎛
⎝⎜

⎞
⎠⎟

3

= 2 ρA

ρH2O

⎛
⎝⎜

⎞
⎠⎟

HH2O

HA

⎛
⎝⎜

⎞
⎠⎟

3

− 3 HH2O

HA

⎛
⎝⎜

⎞
⎠⎟

2

+ 2 ρA

ρH2O

⎛
⎝⎜

⎞
⎠⎟
= 0

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 168 2021-12-15



  statics_03 

Page 1 of 2 

 James Bond is trapped on a small raft in a steep walled pit filled with water as shown in the figure.  Both 
the raft and pit have square cross-sections with a side length of l=3 ft for the raft and L=4 ft for the pit.  In 
the raft there is a steel anchor (SGA=7.85) with a volume of VA=1 ft3.  In the current configuration, the 
distance from the floor of the raft to the top of the pit is H=7.5 ft.  Unfortunately, Bond can only reach a 
distance of R=7 ft from the floor of the raft.  In order for Bond to escape, would it be helpful for him to toss 
the anchor overboard?  Justify your answer with calculations.  (Hint:  The mass of water is conserved in 
this problem.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Consider the cases when the anchor is in the raft and out of the raft as shown in the figures below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
First consider the change in the position of the raft floor relative to the free surface of the water. 
 
Case (a):  (1) 

Case (b):  (2) 
   

mraft+Bond + manchor( )g
weight of raft & contents

  
= ρH2Ogl2h

weight of displaced water
 

   

mraft+Bond( )g
weight of raft & contents
  

= ρH2Ogl2 h+ Δh( )
weight of displaced water
  

l 

L 

(a) 

h 

D l 

L 

D + DD 

h + Dh 

(b) 

H H + DH 

H R 

l 

L 

James Bond 

anchor with volume VA and 
specific gravity, SGA 

water 
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Subtract Eqn. (2) from Eqn. (1) and simplify. 
 (3) 

   (4) 

 (5) 

 (6) 

Note that since Vanchor > 0, Dh < 0 and thus the raft moves up relative to the free surface.  However, the free 
surface will also move so we still don’t yet know whether Bond moves up or down relative to the surface of 
the pit.   
 
We must now consider the movement of the free surface of the water. 
Case (a):  (7) 

Case (b):  (8) 

Since the volume of water is conserved, Eqns. (7) and (8) must be equal. 
 (9) 

 

 (10) 

  (where Eqn. (6) has been utilized) (11) 

Note that since SGanchor > 1, DD < 0, i.e. the free surface moves downward. 
 
Combine the expressions for Dh and DD to determine the movement of the raft bottom relative to the pit 
walls. 

 (12) 

 (13) 

 (14) 

 (15) 

 
Use the given data to determine DH. 

Vanchor = 1 ft3 
L = 4 ft 
SGanchor = 7.85 
l = 3 ft 
Þ  DH = -0.44 ft (The raft moves closer to the top of the pit.)  
 

Recall that H = 7.5 ft and Bond can only reach R = 7 ft.  After tossing the anchor overboard, the bottom of 
the raft is H + DH = 7.06 ft > R = 7 ft.  Hence, Bond still can’t reach the top of the pit.   
 Goodbye, Mr. Bond. 
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

   

VH2O = L2 D + ΔD( )
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  

− l2 h+ Δh( )
volume of raft in H2O
  
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A cylindrical log of radius R and length L rests against the top of a dam.  The water is level with the top of 
the log and the center of the log is level with the top of the dam.  You may assume that the contact point 
with the dam is frictionless.  Obtain expressions for 
a. the mass of the log, and 
b. the contact force between the log and dam. 
Express your answers in terms of (a subset of) rH2O, g, L, and R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The mass of the log, m, may be found by performing a force balance in the vertical direction, 

, (1) 
where g is the acceleration due to gravity.  Note that the point of contact with the dam is assumed to be 
frictionless.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The net vertical pressure force, FP,y, is found by integrating the vertical component of the pressure force 
around the log, 

, (2) 

, (3) 

, (4) 

where r is the density of the water.  Evaluating the integral in Eq. (4) gives, 
, (5) 

. (6) 
Substituting into Eq. (1) and solving for m gives, 

Fy∑ = 0 = mg + FP,y

 

FP,y = psinθ dA
θ=π 2

θ=2π

∫ = ρgy
=p
 sinθ Rdθ L( )

=dA
 

θ=π 2

θ=2π

∫

 

FP,y = ρg R − Rsinθ( )
=y

   sinθRdθ L( )
θ=π 2

θ=2π

∫ = ρgR2L 1− sinθ( )sinθ dθ
θ=π 2

θ=2π

∫

FP,y = ρgR2L sinθ − sin2θ( )dθ
θ=π 2

θ=2π

∫

FP,y = ρgR2L −cosθ θ=π 2

θ=2π − 1
2θ − 1

4 sin 2θ( )⎡⎣ ⎤⎦θ=π 2
θ=2π{ } = ρgR2L −1− 1

2 2π − π
2( )⎡⎣ ⎤⎦

FP,y = − 1+ 3π
4( )ρgR2L

gravity, g 

y q R 

x 

Fw 

mg 

R 
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. (7) 

An alternate, easier method for determining the vertical pressure force acting on the log is to note that the 
vertical surface forces acting along a horizontal plane at the bottom of the log is, 

, (8) 

, (9) 

, (10) 

which is the same result found in Eq. (7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An even easier method is to use a buoyant force, although one must recognize the appropriate volume to 
use to determine the displaced volume.  A vertical force balance for the log gives, 

  Þ  , (11) 

where FB is the buoyant force, which is the weight of the displaced fluid.  Note that in this case, the 
displaced volume of fluid is the volume of the log, plus the volume above the right, upper quadrant of the 
log as shown in the figure below, 

, (12) 
Combining Eqs. (11) and (12) gives the mass of the log, 

, (13) 
which is exactly the same result as found in the previous two methods. 
 
  

m = 1+ 3π
4

⎛
⎝⎜

⎞
⎠⎟ ρR

2L

 

Fy∑ = 0 = ρg 2R( ) 2RL( )
pressure force

at bottom

   −mg
log weight
 −ρgL 3

4 4R2 −πR2( )
weight of water

  
= 4ρgLR2 −mg − ρgL 3

4 4R2 −πR2( )

mg = ρgLR2 4 − 3
4 4 −π( )⎡⎣ ⎤⎦ = ρgLR2 4 − 3+ 3

4 π[ ]
m = ρR2L 1+ 3π

4
⎛
⎝⎜

⎞
⎠⎟

Fy∑ = 0 = −mg + FB m = FB
g

FB = ρgVdisplaced = ρg 3
4 πR

2 + R2( )L = ρgR2L 3π
4 +1( )

m = ρR2L 3π
4 +1( )

y q R 
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Fw 

mg 
mH2Og 
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Now consider a horizontal force balance for the log. 

, (14) 
where Fw is the horizontal force exerted by the wall on the wall and FP,x is the horizontal component of the 
net pressure force acting on the log due to the water.  The net horizontal pressure force is given by, 

, (15) 

. (16) 

Evaluate the integrals in Eq. (16), 

, (17) 

. (18) 
Substitute into Eq. (14) and solve for the wall force. 

. (19) 
 

Another, much simpler method for finding the wall force is to note that the horizontal pressure force acting 
on the log will simply be the pressure force acting on the horizontally projected area. 

, (20) 

which is precisely the same result found in Eq. (18).  Note that the horizontal pressure force is only 
evaluated from y = 0 to y = R since on the bottom half of the log, the pressure forces from either side of the 
log cancel each other out. 
 
 
 
 
 
 
 
 

Fx∑ = 0 = −Fw + FP,x

 

FP,x = − pcosθ dA
θ=π 2

θ=2π

∫ = −ρgy( )
=p

 
cosθ RdθL( )

=dA
 

θ=π 2

θ=2π

∫ = −ρg R − Rsinθ( )
=y

  

⎡

⎣
⎢
⎢

⎤
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⎥
⎥
cosθ RdθL( )

θ=π 2

θ=2π

∫

FP,x == −ρgR2L 1− sinθ( )cosθ dθ
θ=π 2

θ=2π

∫ = −ρgR2L cosθ − sinθ cosθ( )dθ
θ=π 2

θ=2π

∫

FP,x = −ρgR2L sinθ θ=π 2

θ=2π − 1
2 sin

2θ
θ=π 2
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⎣⎢
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2 sin
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⎦⎥

FP,x = −ρgR2L −1+ 1
2[ ] = 1

2 ρgR
2L

Fw = 1
2 ρgR
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FP,x = pdA
y=0

y=R

∫ = ρgy( )
=p
dyL
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

y=0
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∫ = ρgL ydy
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