Boundary Layers — Pressure Gradient Effects

https://www.voutube.com/watch?v=VUiGthC-1A

no dimples: 26+ mpg
with dimples: 29+ mpg

A bit more on the topic:
https://www.theborneopost.com/2014/04/08/vehicle-aerodynamics-drag-reduction-
through-surface-dimples/
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COM

Bernoulli’s Eqn:

(From Van Dyke, M., An Album of Fluid Motion, Parabolic Press.)
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Two contributions to the total drag force:
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(From White, F.M., Fluid Mechanics, 3™ ed., McGraw-Hill.)

Fig. 7.14 Strong differences in lami-
nar and turbulent separation on an
4.5-in bowling ball entering water at
25 ft/s: (a) smooth ball, laminar
boundary layer; (b) same entry. tur-
bulent flow induced by patch of
nose-sand roughness. (U.S. Navy
photograph, Ordnance Test Station,
Pasadena Annex.)
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Dimpled disc cycle wheels (from Zipp) for bicycle racing.

“...the Rec; is reduced by the presence of the dimples....dimples make the flow turbulent
at an earlier point so the more energetic turbulent flow may stay attached to the surface
for longer.”

https://www.racecar-engineering.com/articles/technology/can-dimpled-aerodynamic-
surfaces-reduce-drag/
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Flow Around a Cylinder (or Sphere) As a Function of Reynold: Number
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R= 577

1=910

Figure 4.12.1. Streamlines of steady flow (from left to right) past a circular cylinder of
radius a: R = 2al/v. The photograph at R = o-25 (from Prandtl and Tietjens 1934) nhnu.-.:
the movement of solid particles at a free surface, and all the others (from 'l";n:rd.x 19564a)
show particles illuminated over an interior plane normal to the cylinder axis.

(From Batchelor, GK.. 4n Inmroduction to Fluid Dynamics, Cambridge University Press.)
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Daia spread

Re=TDN

(Fizure from Whte, F. M., Fluid Mechanics, McGraw-Hill)
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Fig. 8.32 Drag coefficlent of a sphere as a function of Reynolds number (Rel. 13).

Commonly used curve fits to the curve shown above are:
Rep<1: Cp = 24/Rep (Stokes’ drag law)
Rep < 5: Cp 24/Rep (1+3/16Rep) (Oseen’s approximation)
0<Rep<2*10:  Cp 24/Rep + 6/(1+Rep’) + 0.4
Rep < 2¥10°: Cp 0.44 (Newton’s Law)
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Fig. 8.54 Drag coefticient for circular cylinders as a function of Reynolds number
(Rel. 13).



