NOTES ON THERMODYNAMICS, FLUID MECHANICS, AND GAS DYNAMICS

5.7. Acceleration of a Fluid Particle in Streamline Coordinates

Often it’s helpful to use streamline coordinates (s,n) instead of Cartesian coordinates (x,y) when describing
the motion of a fluid particle. Let’s determine a fluid particle’s acceleration parallel (s-direction) and normal
(n-direction) to a streamline for a steady, 2D flow. Consider Figure 5.19.

fluid particle

streamlines

FIGURE 5.19. An illustration of a streamline coordinate system.

Notes:

(1) The coordinates (s,n) are just like (x,y) coordinates. They specify the location of the fluid particle.
(2) Lines of constant s and n are perpendicular.

(3) The unit vector § points in the direction tangent to the streamline.

(4) The unit vector n points toward the center of curvature of the streamline.

The acceleration of the fluid particle is,

Du
_ Du 5.176
T (5.176)

where u = u§. Substituting and expanding gives,
D(us)  Du Ds

= =8— —. 5.177
Dt "Dt T'Di (5.177)
Now expand the Lagrangian derivative terms keeping in mind that v = u(s, n),
Du Ju ou Ju Ju
— = — + Up, — 4+ Us — =u—, (5.178)
Dt ot :,T on 2{1-7/ ds s
=0, (flow tangent (low tangent
(steady) to streamline) to streamline)
and,
Ds 08 08 08 08
== _ =z , == B iy 5.179
TNV PNV ML (5.179)
26/ :07 =4,
7 (flow tangent (flow tangent
(steady) to streamline) to streamline)

To determine how § varies with the s-coordinate, consider Figure 5.20. Note that the triangles AOB and
A’O’B’ are similar. Hence,

ds |ds| .. ds| 1
= = —_ = . 1
R = =R (5.180)
~—~

=1
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radius of
curvature, R

streamline

FiGURE 5.20. Illustration showing how the change in the § direction varies with the s coordinate.

Also, as ds — 0, d§ points in the i direction so,

ds 1
— = —n. 5.181
ds Rn ( )
Substituting Eq. (5.181) into Eq. (5.179),
Ds u
— = —n. 5.182
Dt~ R" (5.182)
Substituting Eq. (5.182) and Eq. (5.178) into Eq. (5.177) gives the fluid particle acceleration in streamline
coordinates,
Ju u
_ il il 5.183
a (u 88) S+ < 7 ( )
———
tangential normal
acceleration acceleration
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Water flows through the curved hose shown below with an increasing speed of u = 10¢ ft/s, where ¢ is in
seconds. For ¢ =2 s determine:

a. the component of acceleration along the streamline,

b. the component of acceleration normal to the streamline, and

c. the net acceleration (magnitude and direction).

R=20{t

SOLUTION:

The acceleration component in the streamline direction is,

ag = o +u ou , )
ot os
where,
—=10 / , (The flow is unsteady.)
ot s
0 . . .. .
oo (The flow velocity doesn’t change with respect to position along the streamline.)
s
ca, =10 y
ds S2
The acceleration component normal to the streamline is,
2
u
an = ? ’ (2)
where,
W (10%2fs)’ o
—=2—— 7 —ooft 5 (The velocity is evaluated at £ =2 s.)
R 20 ft s
soa, =20 %2 (The acceleration is toward the center of curvature.)
The net acceleration is,
N n ds
a=g,n+ags 3)
a=(20A+10§ y
( ) S2 an
a
|a|=22.41/,
s
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5.8. Euler’s Equations in Streamline Coordinates

Recall from previous analyses (Section 5.6) that the differential equations of motion for a fluid particle in an
inviscid flow in a gravitational field are,

pD—’ltL = —-Vp+ pg Euler’s Equations. (5.184)
For simplicity, further assume that we're dealing with a 2D, steady flow. Now write Eq. (5.184) in streamline
coordinates (s,n) (Figure 5.21),

s — direction: pas = —% + pYs, (5.185)
s

n — direction: pa, = —g—p + pgn. (5.186)
n

fluid particle streamlines

FIGURE 5.21. A fluid particle in streamline coordinates.

Recall that in streamline coordinates (refer to the previous section),
2

as = ua—z and a, = %, (5.187)
so that Eqgs. (5.185) and (5.186) become,
ou 10p
gu__1op, 1
UGy = s Y (5.188)
u? 10p
vw_ 1o, 5.189
= Son Y ( )

These are the 2D, steady Euler’s Equations in streamline coordinates.

We can draw an important and very useful conclusion from Eq. (5.189). For a flow moving in a straight line

(R — o) and neglecting gravity (g, = 0) we have,
w_,
on

i.e., the pressure does not change normal to the direction of the flow! This result is very helpful when

considering the pressure in a free jet (Figure 5.22). Since free jets typically have negligible curvature and

gravitational effects, the pressure everywhere normal to the free jet will be the same!

(5.190)

Similarly, for a flow with parallel streamlines adjacent to a flat boundary (Figure 5.23), the pressure gradient

normal to the flow is,

10p dp
__19p — P _ 191
0 Son Y 5, — P9 (5.191)

Thus, the pressure normal to the flow varies hydrostatically.
Now consider flow in a bend, as shown in Figure 5.24. Here, in the i direction,
u? 1 0p o 2

u
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: >
e I
—_— free jet
_I_>
: >
1 P = Patm

R — o

FI1GURE 5.23. Streamlines for a flow parallel to a flat boundary.

FIGURE 5.24. Streamlines in a curved bend.

Thus, the pressure increases as one moves in the negative n direction. The largest pressure is on the outside

of the bend while the smallest pressure is on the inside part of the bend. If the fluid is a liquid and the inside
bend pressure reaches the vapor pressure of the liquid, cavitation will occur.
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In the curved inlet section of a wind tunnel the velocity distribution has a streamline radius of curvature
given by:

L
r =R,
Rozy

As a first approximation, assume the air speed along each streamline is 20 m/s. Evaluate the pressure
change from the center line of the tunnel to the wall (located at y = L/2) if L = 150 mm and Ro = 0.6 m.

Ro

SOLUTION:

Apply Euler’s equation across the streamlines.

dp V2
@&, 1
dr r M
Note that in the channel:
y:(RO+%)—r = dy=-—dr 2
Substitute for the curvature radius and solve for the pressure difference.
dp y? 20V
e i = dp=-— d 3
e o L p RoL ydy 3
) —
2y
P=Py-1)2 ) ¥=L/2
20V
dp=— J' d 4
_[ p R,L ydy “
P=Py=o »=0
R ®)
Py-1/2 ~ Py=0 4R,
Using the given data:
p =123 kg/m?
Vo =20m/s
Ry =0.6m
L =150e-3m

= |py:L/2 —py=0=-30.8 Pal
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The velocity distribution in a horizontal, two-dimensional bend through which an ideal fluid flows can be

approximated:
k
ug = —
B

where 7 is the radius of curvature and & is a constant. Show that the volumetric flow rate through the bend,
0, is related to the pressure difference, Ap = ps — pa, and fluid density, p, via:

o-c[®
Yol

where C is a constant that depends upon the bend geometry.

SOLUTION:

Apply Euler’s equation across the streamlines:
2

dp Uy
@_ L% Q)
dr P r
Substitute for the given velocity profile and solve the differential equation.

dp K
@ _ r (@)
di" ,D r3
P=Pp

j dp = pk’ I = 3)
P=P4

2 2
pko( 1 1 pko( 1 1
= — == —— | = | — — — 4

Ap=pp—py b (b2 az) 2 (2 B2 “4)

Relate k& to the Volumetric flow rate using the velocity profile.

0= jugdr—kj——kl (Zj )
k:L 6)

o0

Substitute Eqn. (6) into Eqn. (4) and simplify.
2

w4t )

ln(i] a b
f“—P 2
3y
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Consider the steady, inviscid flow through a smooth, constant diameter pipe bend as shown in the figure below.
Gravity may be neglected in this problem. The fluid velocity in the bend is inversely proportional to the radius, i.e.,

k
ug =,
r

where k is a constant.

ue

pA4

How does the pressure difference, ps — p4, change as the radius Rs increases (R4 remains constant)?
A. increases
decreases

remains the same

C 0o =

not enough information is given

o

it’s twice the change in the momentum flux

SOLUTION:

Simplify the radial component of Euler’s equation.

2 2
d_ w5 A p(k/r) )

dr r dr 7

P=Ps r=Ry R
dr 11Y*%
o= % = s 11)
= T 2r Ry
P=P4 r=Iy

1 L1 1 1 L1 1
Pp=—Pa=—=pPk"| =~ | = |ps—Pa==Pk | 55 3)
P2 [Ré REJ P [Ri Réj

Thus, as R increases, |ps — p4 increases|.
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