A cylindrical tank if filled with water. In order to control the flow rate from the tank, a pressure can be applied to the water surface by a compressor. For an applied absolute pressure of 3 bar, calculate the hydrostatic force exerted by the water on the end surface of the tank.

SOLUTION:
Draw the pressure distribution acting on the tank end surface due to the water in the tank.

The hydrostatic pressure force on the tank surface due to the water is,

$$
\begin{align*}
& F=\int_{z=0}^{z=2 R} p d A=\int_{z=0}^{z=2 R} \underbrace{\left(p_{0}+\rho g z\right)}_{=p}\left[2 \sqrt{R^{2}-(R-z)^{2}} d z\right] \tag{1}\\
& F=2 \int_{z=0}^{z=2 R}\left(p_{0}+\rho g z\right) \sqrt{2 R z-z^{2}} d z=2\left[p_{0} \int_{z=0}^{z=2 R} \sqrt{2 R z-z^{2}} d z+\rho g \int_{z=0}^{z=2 R} z \sqrt{2 R z-z^{2}} d z\right], \tag{2}\\
& F=2\left[p_{0} \frac{\pi R^{2}}{2}+\rho g \frac{\pi R^{3}}{2}\right], \tag{3}\\
& F=\pi R^{2}\left(p_{0}+\rho g R\right) . \tag{4}
\end{align*}
$$

Using the following parameters:

$$
\begin{aligned}
& R=0.5 \mathrm{~m} \\
& p_{0}=3 \mathrm{bar}(\mathrm{abs})=300 \mathrm{kPa}(\mathrm{abs}) \\
& \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& \Rightarrow F=23.6 \mathrm{MN} .
\end{aligned}
$$

Note an alternate approach to solving the problem is to break the applied pressure into a constant part at pressure p_{0} and the linearly increasing part, as shown in the figures below.

