When fluid with a specific weight of $50 \, lb_f/ft^3$ flows with a flow rate of $2.0 \, ft^3/s$ in a 6 in. pipeline, the frictional stress is $0.5 \, psf$.

- a. Calculate the head lost per foot of pipe (in ft/ft).
- b. How much power is lost per foot of pipe (in hp/ft)?

SOLUTION:

The (major) head loss is,

The (major) head loss is,
$$H_L = f\left(\frac{L}{D}\right) \frac{\overline{V}^2}{2g} \Rightarrow \frac{H_L}{L} = f\left(\frac{1}{D}\right) \frac{\overline{V}^2}{2g},$$
 (1) where,

$$f = \frac{4\tau_W}{\frac{1}{2}\rho\bar{V}^2},$$

$$\bar{V} = \frac{Q}{\frac{q}{4}D^2}.$$
(2)

$$\bar{V} = \frac{Q}{\pi_D^2}.\tag{3}$$

Using the given data,

$$Q = 2.0 \text{ ft}^3/\text{s},$$

$$D = 6 \text{ in.} = 0.5 \text{ ft},$$

$$\Rightarrow \bar{V} = 10.19 \text{ ft/s},$$

$$\rho g = 50 \text{ lb}_f/\text{ft}^3 \implies \rho = 50 \text{ lb}_m/\text{ft}^3 \text{ (Note: } 1 \text{ lb}_f = 32.2 \text{ lb}_m.\text{ft/s}^2.),$$

$$\tau_w = 0.5 \text{ lb}_f/\text{ft}^2,$$

$$\Rightarrow f = 0.0248,$$

$$=> f = 0.0248,$$

 $=> H_L/L = 0.08.$

The power lost is,

$$H_L = \frac{\dot{w}_L}{\rho Qg} \Rightarrow \dot{W}_L/L = \rho Qg H_L/L . \tag{4}$$

Using the given data,
$$\dot{W}_L/L = 8.0 \, \text{lb}_f/\text{s} = 0.0145 \, \text{hp/ft}$$
. (Note: 1 hp = 550 lb_f.ft/s.)