The Mach number and temperature upstream of a shock wave are 2 and 7  $^{\circ}$ C, respectively. What is the air speed, relative to the shock wave, downstream of the shock wave?

## SOLUTION:

Use the normal shock relations to determine the downstream Mach number.

$$Ma_2^2 = \frac{(k-1)Ma_1^2 + 2}{2kMa_1^2 - (k-1)} \implies \underline{Ma_2 = 0.58}$$
 (1)

where k = 1.4 and Ma<sub>1</sub> = 2.

Determine the stagnation temperature upstream of the shock wave.

$$\frac{T_1}{T_{01}} = \left(1 + \frac{k - 1}{2} \operatorname{Ma}_1^2\right)^{-1} \implies \underline{T_{01} = 504 \text{ K}}$$
 (2)

where  $T_1 = (273 + 7) \text{ K} = 280 \text{ K}$ .

Note that the stagnation temperature remains constant across a shock wave, so  $T_{02} = T_{01}$ . Use the downstream stagnation temperature and downstream Mach number to determine the downstream static temperature:

$$\frac{T_2}{T_{02}} = \left(1 + \frac{k - 1}{2} \operatorname{Ma}_2^2\right)^{-1} \implies \underline{T_2 = 473 \text{ K}}$$
 (3)

Use the definition of the Mach number and the speed of sound for an ideal gas to determine the air speed downstream of the shock wave:

$$V_2 = \text{Ma}_2 c_2 \Rightarrow V_2 = \text{Ma}_2 \sqrt{kRT_2} \quad \Rightarrow \boxed{V_2 = 252 \text{ m/s}}$$
where  $R_{\text{air}} = 287 \text{ J/(kg.K)}$ . (4)