When a weight W is placed on a piston with an area A, fluid in an inclined manometer moves from point 1 to point 2. What is W in terms of the fluid density ρ , gravitational acceleration g, the displacement L, the piston area A, and the tube arm angle θ ?

SOLUTION:

Analyzing the manometer after the weight is applied,

$$p_{atm} = p_{piston} - \rho g L \sin \theta,$$
 where the (absolute) pressure in the fluid just below the piston is,

where the (absolute) pressure in the fluid just below the piston is,
$$p_{piston} = p_{atm} + \frac{w}{A}. \tag{2}$$
 Combine both equations and solve for W ,
$$p_{atm} = p_{atm} + \frac{w}{A} - \rho g L \sin \theta, \tag{3}$$

$$\overline{W} = \rho g L A \sin \theta. \tag{4}$$

$$p_{atm} = p_{atm} + \frac{w}{A} - \rho g L \sin \theta, \tag{3}$$

$$W = \rho g L A \sin \theta. \tag{4}$$