A supersonic wind tunnel test section is designed to have a Mach number of 2.5 at a temperature of 60 $^{\circ}F$ and 5 psia. The fluid is air.

- a.
- Determine the required inlet stagnation temperature and pressure. Calculate the required mass flow rate for a test section area of 2.0 ft². b.

SOLUTION:

The stagnation properties may be found using the isentropic relations:

$$\frac{p_{TS}}{p_0} = \left(1 + \frac{\gamma - 1}{2} Ma_{TS}^2\right)^{\frac{\gamma}{1 - \gamma}}$$
 (1)

$$\frac{T_{TS}}{T_0} = \left(1 + \frac{\gamma - 1}{2} Ma_{TS}^2\right)^{-1}$$
 (2)

where

$$p_{TS}$$
 = 5 psia = 720 lb_f/ft²
 T_{TS} = (60 + 459) °R = 519 °R
Ma_{TS} = 2.5
 γ_{air} = 1.4
 $\therefore p_0 = 85.4$ psia and $T_0 = 1170$ °R

The mass flow rate may be found using:

$$\dot{m}_{TS} = \rho_{TS} V_{TS} A_{TS} = \left(\frac{p_{TS}}{R T_{TS}}\right) \left(c_{TS} M a_{TS}\right) A_{TS}$$
(3)

where the speed of sound in the test section, c_{TS} , is:

$$c_{TS} = \sqrt{\gamma R T_{TS}} \tag{4}$$

Using the given data:

$$R_{\text{air}} = 53.3 \text{ (ft·lbf)/(lbm·°R)}$$

$$A_{TS} = 2 \text{ ft}^2$$

$$\Rightarrow c_{TS} = 1120 \text{ ft/s}$$

$$\rho_{TS} = 0.0260 \text{ lbm/ft}^3$$

$$\boxed{\dot{m}_{TS} = 145 \text{ lb_m/s}}$$

