An open cylindrical tank having a diameter D is supported around its bottom circumference and is filled to a depth h with a liquid having a specific weight γ. The vertical deflection, δ, of the center of the bottom is a function of D, h, d, γ, and E where d is the thickness of the bottom and E is the modulus of elasticity of the bottom material. Form the dimensionless groups describing this relationship.

SOLUTION:

1. Write the dimensional functional relationship.

$$
\delta=f_{1}(D, h, d, \gamma, E)
$$

2. Determine the basic dimensions of each parameter.

$$
\begin{aligned}
& {[\delta]=L} \\
& {[h]=L} \\
& {[D]=L} \\
& {[d]=L} \\
& {[\gamma]=\frac{M}{L^{2} T^{2}}=\frac{F}{L^{3}}} \\
& {[E]=\frac{M}{L T^{2}}=\frac{F}{L^{2}}}
\end{aligned}
$$

3. Determine the number of Π terms required to describe the functional relationship.
\# of variables $=6(\delta, D, h, d, \gamma, E)$
\# of reference dimensions $=2\left(L, F / L^{2}\right.$ or $\left.L, M / T^{2}\right)$
(Note that the number of reference dimensions and the number of basic dimensions are not the same for this problem!)
$(\# \Pi$ terms $)=(\#$ of variables $)-(\#$ of reference dimensions $)=6-2=4$
4. Choose two repeating variables by which all other variables will be normalized (same \# as the \# of reference dimensions).
D, γ (Note that the dimensions for D and γ are independent.)
5. Make the remaining non-repeating variables dimensionless using the repeating variables.

$$
\begin{aligned}
& \Pi_{1}=\delta D^{a} \gamma^{b} \\
& \Rightarrow F^{0} L^{0}=(L / 1)(L / 1)^{a}\left(F / L^{3}\right)^{b} \\
& F: 0=b \\
& L: 0=1+a-3 b \Rightarrow a=-1 \\
& \therefore \Pi_{1}=\delta / D \\
& \Pi_{2}=h D^{a} \gamma^{b} \\
& \Rightarrow F^{0} L^{0}=(L / 1)(L / 1)^{a}\left(F / L^{3}\right)^{b} \\
& F: 0=b \\
& L: 0=1+a-3 b \Rightarrow a=-1 \\
& \therefore \Pi_{2}=h / D \\
& \Pi_{3}=d D^{a} \gamma^{b} \\
& \Rightarrow F^{0} L^{0}=(L / 1)(L / 1)^{a}\left(F / L^{3}\right)^{b} \\
& F: 0=b \\
& L: 0=1+a-3 b \Rightarrow a=-1 \\
& \therefore \Pi_{3}=d / D \\
& \Pi_{4}=E D^{a} \gamma^{b} \\
& \Rightarrow F^{0} L^{0}=\left(F / L^{2}\right)(L / 1)^{a}\left(F / L^{3}\right)^{b} \\
& F: 0=1+b \Rightarrow b=-1 \\
& L: 0=-2+a-3 b \Rightarrow a=-1 \\
& \therefore \Pi_{4}=E /(D \gamma)
\end{aligned}
$$

6. Verify that each Π term is, in fact, dimensionless.

$$
\begin{aligned}
& {\left[\Pi_{1}\right]=[\delta / D]=L / L=1 \text { OK! }} \\
& {\left[\Pi_{2}\right]=[h / D]=L / L=1 \text { OK! }} \\
& {\left[\Pi_{3}\right]=[d / D]=L / L=1 \text { OK! }} \\
& {\left[\Pi_{4}\right]=[E /(D \gamma)]=\left(F / L^{2}\right)(1 / L)\left(L^{3} / F\right)=1 \text { OK! }}
\end{aligned}
$$

7. Re-write the original relationship in dimensionless terms.

$$
\frac{\delta}{D}=f_{2}\left(\frac{h}{D}, \frac{d}{D}, \frac{E}{D \gamma}\right)
$$

