ns 35

Consider a Newtonian liquid film that is driven by a constant shear stress, 7,.(y = &) = C, applied by a plate
to the top surface. Assume that the liquid film is flat, fully developed, and has a constant pressure gradient
in the x-direction such that there is zero net flow rate (Q = 0).

T,=C
?|
h liquid
Y
Lx flow has width b into the page

Determine the velocity profile u(y) and the pressure gradient dp/dx.

a. Use the continuity and Navier-Stokes equations to solve this problem.

b. Use a differential control volume and apply conservation of mass and the linear momentum equation to
solve this problem.

SOLUTION:
Make the following assumptions about the flow:
- 9 (. )=0u =
1. The flow is planar. = AZ( )— 0,u_ = constant
. 9/ (..)=
2. The flow is steady. = /BI( )— 0
. . S Jdu du,
3. The flow is fully developed in the x-direction. = 2 W Y = 0
4. Gravity acts in the —y direction. = g,=-88,=8.= 0

The continuity equation for an incompressible, planar flow is:

L4 2o0 = —2=0. 1

=0(#3)
Since the flow is also steady (#2), fully developed (#3), and planar (#1), the y-velocity can be at most a
constant. Since u, = 0 at the wall, then u, everywhere is:

u, =0 (Call this condition #5.) 2)

Now examine the x-momentum equation:

Ju, iy du, . % __8_p+ o’u, +82ux N
o™ 2oy [T e T | 2
=0(#2) =o(#3) =0(#s) o(#3) =0(#4)
d d*u
0=y e )

where the partial derivatives have been replaced by ordinary derivatives since u, is not a function of x (#3),
t (#1), or z (#1).

Now consider the y-momentum equation,

ou, ou, ou, ap du, u, A
—Ltu L+ u =L |=-+ + +
Pl ™o T oy T T e Ty [P & @
=0(#2) =0(#3) ‘0(#5);(';5) =o(#5) ?0(;;)' =sg(#4)
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__9p_
0= ay pg > (5)
I __

ay - pg > (6)
p(x.y)=pg(h-y)+ f(x). @)

Note that the pressure is not a function of the z direction since the flow is planar.

Now solve Eqn. (3) for the velocity profile.
du,_13p_1d

= s 8
dy* wox udx ®
du. 1d
—“=——fy+cl )
dy Wdx

L df
u, =Egyz+cly+c2 (10)

Apply boundary conditions to determine the unknown constant ¢; and c,.
no-slipat y=0 = ux(y:())zo = 0=c, (11)
du 1df
tant st ty=h =7 =h)= Hy=h)=C = ———h+c, |=C 12
constant stress at y yx(y ) 'udy (y ) ”(,udx clj (12)
c, =l[C—£hJ (13)
u dx
Re-write the velocity profile,
w=t Y o e @y, (14)
Y 2udx u dx
Since the flow has zero volumetric flow rate,
y=h
Q= Juxbdy:O, (15)
y=0
e df o, 1. df
J ——y2+—[C——h]y dy=0, (16)
ool 21 dx u dx
SIS S DR YRy (17)
6u dx 2u dx
2
L dfpa 1 dfps (18)
6u dx 2u 2udx
2
—1£h3+ﬂ:0, (19)
3udx 2u
df 3C
ézﬁ . Note that g—Z:% (refer to Eq. (7)). (20)
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Substitute back into Eq. (14) to get,

u==Cp e lcly, @1
Y oA4uh u 2
3C, 1

= —Cy| 22
u, 4/Jhy o y (22)

Now solve the same problem, but using the fixed differential control volume shown in the following figure.

7,=C [T+ dT. /dy)dy](bdx)
& l : ) [(p+dpldx)dx](bdy)
h Too_—___ay
-F
ﬁx dx_J L—

flow has width b into the page

Apply conservation of mass,

ijpdV+jpurel~dA:0, (23)
dt cv CS
where,
d
Ec'[/ pdV =0 (steady), (24)

st,ourel dA=—pu, (bdy)+p[ux + %‘)’(x de(bdy)—puy(bdx)+p[uy +%dy](bdx) , (25)

(Note: Assuming planar flow so the z component isn’t shown.)

P d
E[purel dA=p a’ix (bxdy)+ pai;(bdxdy) . (26)

Note that the flow is fully developed in the x direction, planar, and steady,
du
[ pu,,-dA=p—=(bdxdy) . 27)
cs dy
Substitute and simplify,
a, (bdxdy)=0 Wy g 28
e — X = = —==0.
p & ly & (28)
Using the same logic used to derive Eq. (2) gives u, = 0.

Now apply the linear momentum equation in the x direction,

ijuxparv+jux(pure]-arA)=1L*3x+FSX, (29)
dt cv Cs ’ ’

where,
d
— |u_pdV =0 (steady), 30
gt ] 1PV =0 (steady) (30)
Ju,(pu,,-dA)=0 (fully developed in the x-direction; u, = 0), (1)
cS
F, =0, (32)
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at
F. =pbdy— p+a—pdx bdy—t_bdx+| T _+—2dy |bdx . (33)
Sx aX VX VX ay
Substitute and simplify,
ap ot
0=pbdy—| p+——dx |bdy—7_bdx+|t +—2dy |bdx, (34)
ox ” >y
op at
0=——dxdy +—=dxdy , (35)
ox oy
dt
—”:d—p. (36)
dy dx
Note that,
aux+ auy B’L'yx d( ou, o’u, 37)
T =U — |= =—u =Uu .
g dy ox, | dy ay( dy) "oy

=0 since
u =0
v

Since the flow is steady, full developed in the x direction, and planar, Eq. (37) can be written in terms of an
ordinary derivative,

ot d*u
Wt
ay
Thus, Eq. (36) becomes,
d“u op
—x = 38
dy* ox %)
dZ
du, _19p (39)
dy* pox

This equation is the same as that found previously (Eq. (8)).

The pressure gradient in the y direction can be found by applying the linear momentum equation in the y
direction to the same control volume,

d
EcjuypdV+E[uy(purel~dA):FB’y+FS’y, (40)
A
where,
d
Eé[/uypdeO (steady; u, = 0), A1)
[u,(pu,,-dA)=0 (u,=0), (42)
Ccs
F, =—pgbdxdy (43)
ap aTW
FS’y = pbdx — p+$dy bdx—TXybdy+ 7, +de bdy . (44)
Substitute and simplify,
op ot
0=—-pgbdxdy + pbdx —| p+——dy |bdx—t_bdy+| T _+—>dx |bdy , (45)
dy v RO )¢
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op ot
———dxdy +—>dxdy = pgdxdy ,
dy ox

Note that,
T = au}’ + aux = aTyX — i aux — i ai = 0
w = H ox, dy ox ox|' ay _May 9x, o

=0 since =0 since
u =0 fully-developed
7 inx direction

where the order of the partial derivative have been flipped near the end of the equation.

Equation (46) now becomes,
—a—pdxdy =pgdxdy ,
dy
/4

dy
which is precisely the same as Eq. (6)

=-pg,
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(46)

(47)

(48)

(49)
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