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An incompressible, Newtonian liquid of density pand dynamic viscosity u is sheared between concentric
cylinders as shown in the sketch below. The inner cylinder radius is R; and the outer cylinder radius is R,,.

/)

a. Determine the velocity profile for the liquid in the gap assuming that the inner cylinder rotates with
constant angular speed, @. Do not assume that (R, — R;) << R,.

b. Determine the torque (per unit depth into the page) acting on the outer wall of the cylinder.
SOLUTION:

The continuity and momentum equations in cylindrical coordinates for an incompressible, Newtonian fluid
with constant viscosity are:
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Make the following additional assumptions:

0
1. steady flow = —|(---)=0
y =)
2. neglect gravity = fBZ =0, fB’ = sz,&ZO
3. planar flow = u =constant,i(~..)=0
s Jdz

4. axi-symmetric flow = aur —aﬂ =a& =
6 96 d0

5. no pressure gradients in the 6 direction = g—l; =0 (due to the axi-symmetric flow assumption)

Simplify the continuity equation using the given assumptions:

la(m,)#au du, U, = d(ru,)

v or rd0 oz or
e e
=0(#4)  =0(#3)
Note that from assumptions #3 and #4, u, is not a function of either z or 6. Since there is no radial flow at
the inner boundary (» = R;), the constant in the previous equation must be zero. Thus,
u, =0 (condition #6)

=0 = ru, = constant
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Now simplify the momentum equations using our assumptions and condition #6:

du du, uy du, up du, ap . | a|10 1 %, w2 du,
Loty L+ —-—+u, — |=———FU|—|—=—|F u +— o+ L —— — +p f.
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d|1ld
= pu—|——ruy)|=0
H dr |:r dr ( ¢ ):|
Note that since u, is not a function of z or 8 (assumptions #3 and #4), the partial derivatives with respect to

r in the last equation can be written as ordinary derivatives. Integrating the second equation with respect to
r twice gives:

c
up (r) = e+ 2
-

where ¢, and ¢, are constants.

The boundary conditions for the flow are:

no-slip at r = R;: Uy (r:Ri):wRi
no-slip at r = R,: Ug (rzRD)ZO
The boundary conditions are used to determine the unknown constants.
C C
ug(r=R)=0=¢cR +2 = ¢ =—-2
(] ( 0 ) 1% RD 1 Rg
R2 —R? R’R?
ug(r=R)=wR =cR+2=-2R+2=c)| 0 | = ¢, =0 S
Ri Ro R7 RiRo Ro _R[
Hence:
R*R? rol
e
B RR’ o—1r°
SR V) W
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The torque on the outer wall (assuming unit depth) is given by:

d
T:Ro(anoch:R) 2R r;r[“9]+l 81;

d RR VR -1’
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d "{urarlia{R: 2][ r’R} J:l}
R*R? a 1
RI-R’ "o\ g i
=27 a)R Rsz _—2
TS R R )P -

R’R
T= —47r,ua)[ e ]

Note that the stress 0, is the stress acting on the fluid. The stress acting on the cylinder will be in the
opposite direction. Thus, the torque on the cylinder is:

2 2
T = 475;10)[

r=R,

R —R2
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