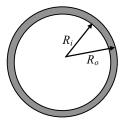
An incompressible, Newtonian liquid of density ρ and dynamic viscosity μ is sheared between concentric cylinders as shown in the sketch below. The inner cylinder radius is R_i and the outer cylinder radius is R_o .



- a. Determine the velocity profile for the liquid in the gap assuming that the inner cylinder rotates with constant angular speed, ω . Do not assume that $(R_o R_i) \ll R_o$.
- b. Determine the torque (per unit depth into the page) acting on the outer wall of the cylinder.

SOLUTION:

The continuity and momentum equations in cylindrical coordinates for an <u>incompressible</u>, <u>Newtonian</u> fluid with <u>constant viscosity</u> are:

$$\begin{split} &\frac{1}{r}\frac{\partial\left(ru_{r}\right)}{\partial r}+\frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0\\ &\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r}\frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r}\frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z}\frac{\partial u_{r}}{\partial z}\right)=-\frac{\partial p}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(ru_{r}\right)\right)+\frac{1}{r^{2}}\frac{\partial^{2}u_{r}}{\partial \theta^{2}}+\frac{\partial^{2}u_{r}}{\partial z^{2}}-\frac{2}{r^{2}}\frac{\partial u_{\theta}}{\partial \theta}\right]+\rho f_{r}\\ &\rho\left(\frac{\partial u_{\theta}}{\partial t}+u_{r}\frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r}\frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r}u_{\theta}}{r}+u_{z}\frac{\partial u_{\theta}}{\partial z}\right)=-\frac{1}{r}\frac{\partial p}{\partial \theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(ru_{\theta}\right)\right)+\frac{1}{r^{2}}\frac{\partial^{2}u_{\theta}}{\partial \theta^{2}}+\frac{\partial^{2}u_{\theta}}{\partial z^{2}}+\frac{2}{r^{2}}\frac{\partial u_{r}}{\partial \theta}\right]+\rho f_{\theta}\\ &\rho\left(\frac{\partial u_{z}}{\partial t}+u_{r}\frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r}\frac{\partial u_{z}}{\partial \theta}+u_{z}\frac{\partial u_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}}\frac{\partial^{2}u_{z}}{\partial \theta^{2}}+\frac{\partial^{2}u_{z}}{\partial z^{2}}\right]+\rho f_{z} \end{split}$$

Make the following additional assumptions:

1. steady flow
$$\Rightarrow \frac{\partial}{\partial t} (\cdots) = 0$$

2. neglect gravity
$$\Rightarrow f_{B,z} = 0, f_{B,r} = 0, f_{B,\theta} = 0$$

3. planar flow
$$\Rightarrow u_z = \text{constant}, \frac{\partial}{\partial z} (\cdots) = 0$$

4. axi-symmetric flow
$$\Rightarrow \frac{\partial u_r}{\partial \theta} = \frac{\partial u_{\theta}}{\partial \theta} = \frac{\partial u_z}{\partial \theta} = 0$$

5. no pressure gradients in the θ direction $\Rightarrow \frac{\partial p}{\partial \theta} = 0$ (due to the axi-symmetric flow assumption)

Simplify the continuity equation using the given assumptions:

$$\frac{1}{r}\frac{\partial (ru_r)}{\partial r} + \frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta} + \underbrace{\frac{\partial u_z}{\partial z}}_{=0(\# 4)} = 0 \implies \frac{\partial (ru_r)}{\partial r} = 0 \implies ru_r = \text{constant}$$

Note that from assumptions #3 and #4, u_r is not a function of either z or θ . Since there is no radial flow at the inner boundary $(r = R_i)$, the constant in the previous equation must be zero. Thus,

$$u_r = 0$$
 (condition #6)

Now simplify the momentum equations using our assumptions and condition #6:

$$\rho\left(\frac{\partial u_r}{\partial t} + \underbrace{u_r \frac{\partial u_r}{\partial r} + \underbrace{u_\theta}_{=0(\#4,\#6)} \frac{\partial u_r}{\partial \theta} - \underbrace{u_\theta^2}_{=0(\#4,\#6)} - \underbrace{u_\theta^2}_{=0(\#3,\#6)}\right) = -\frac{\partial p}{\partial r} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r \underbrace{u_r}_{=0(\#6)}\right)\right) + \underbrace{\frac{1}{r^2}\frac{\partial^2 u_r}{\partial \theta^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2 u_r}{\partial z^2} - \frac{2}{r^2}\frac{\partial u_\theta}{\partial \theta}}_{=0(\#4)}\right] + \rho\underbrace{\int_r}_{=0(\#2)}$$

$$\Rightarrow \frac{\partial p}{\partial r} = \rho\underbrace{\frac{u_\theta^2}{r}}_{r}$$

$$\rho\left(\frac{\partial u_\theta}{\partial t} + \underbrace{u_r\frac{\partial u_\theta}{\partial r} + u_\theta}_{=0(\#6)} + \underbrace{\frac{\partial u_\theta}{\partial \theta}}_{=0(\#4)} + \underbrace{u_r\frac{\partial u_\theta}{\partial z}}_{=0(\#4)} + \underbrace{u_r\frac{\partial u_\theta}{\partial z}}_{=0(\#4)} + \underbrace{u_r\frac{\partial u_\theta}{\partial z}}_{=0(\#4)} + \underbrace{\frac{\partial^2 u_r}{\partial z^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2 u_\theta}{\partial z^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2 u_\theta}{\partial z^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2 u_r}{\partial z^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2 u_r}{\partial z^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2 u_\theta}{\partial z^2}}_{=0(\#4,\#6)} + \underbrace{\frac{\partial^2$$

Note that since u_{θ} is not a function of z or θ (assumptions #3 and #4), the partial derivatives with respect to r in the last equation can be written as ordinary derivatives. Integrating the second equation with respect to r twice gives:

$$u_{\theta}\left(r\right) = c_{1}r + \frac{c_{2}}{r}$$

where c_1 and c_2 are constants.

The boundary conditions for the flow are:

no-slip at
$$r = R_i$$
: $u_{\theta}(r = R_i) = \omega R_i$
no-slip at $r = R_o$: $u_{\theta}(r = R_o) = 0$

The boundary conditions are used to determine the unknown constants.

$$\begin{split} u_{\theta}\left(r=R_{o}\right) &= 0 = c_{1}R_{o} + \frac{c_{2}}{R_{o}} \implies c_{1} = -\frac{c_{2}}{R_{0}^{2}} \\ u_{\theta}\left(r=R_{i}\right) &= \omega R_{i} = c_{1}R_{i} + \frac{c_{2}}{R_{i}} = -\frac{c_{2}}{R_{o}^{2}}R_{i} + \frac{c_{2}}{R_{i}} = c_{2}\left(\frac{R_{o}^{2} - R_{i}^{2}}{R_{i}R_{o}^{2}}\right) \implies c_{2} = \omega \left(\frac{R_{i}^{2}R_{o}^{2}}{R_{o}^{2} - R_{i}^{2}}\right) \end{split}$$

Hence:

$$u_{\theta}(r) = \omega \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2} \right) \left(-\frac{r}{R_0^2} + \frac{1}{r} \right)$$
$$\therefore u_{\theta}(r) = \omega r \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2} \right) \left(\frac{R_0^2 - r^2}{r^2 R_0^2} \right)$$

The torque on the outer wall (assuming unit depth) is given by:

$$\begin{split} T &= R_o \left(2\pi R_o \, \sigma_{r\theta} \Big|_{r=R_o} \right) = 2\pi R_o^2 \left\{ \mu \left[r \, \frac{\partial}{\partial r} \left(\frac{u_\theta}{r} \right) + \frac{1}{r} \, \frac{\partial u_r}{\partial \theta} \right] \right\}_{r=R_o} \\ &= 2\pi R_o^2 \left\{ \mu r \, \frac{\partial}{\partial r} \left[\omega \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2} \right) \left(\frac{R_0^2 - r^2}{r^2 R_0^2} \right) \right] \right\}_{r=R_o} \\ &= 2\pi \mu \omega R_o^2 \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2} \right) \left\{ r \, \frac{\partial}{\partial r} \left[\left(\frac{1}{r^2} - \frac{1}{R_0^2} \right) \right] \right\}_{r=R_o} \\ &= 2\pi \mu \omega R_o^2 \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2} \right) \left\{ \frac{-2}{r^2} \right\}_{r=R_o} \end{split}$$

$$T = -4\pi \mu \omega \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2} \right)$$

Note that the stress $\sigma_{r\theta}$ is the stress acting on the fluid. The stress acting on the cylinder will be in the opposite direction. Thus, the torque on the cylinder is:

$$\therefore T = 4\pi\mu\omega \left(\frac{R_i^2 R_o^2}{R_o^2 - R_i^2}\right)$$