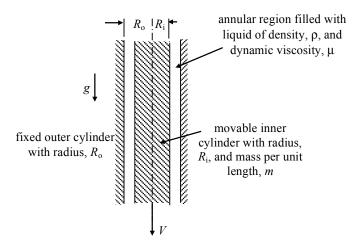
Consider two concentric cylinders with a Newtonian liquid of constant density, ρ , and constant dynamic viscosity, μ , contained between them. The outer pipe, with radius, R_0 , is fixed while the inner pipe, with radius, R_i , and mass per unit length, m, falls under the action of gravity at a constant speed. There is no pressure gradient within flow and no swirl velocity component. Determine the vertical speed, V, of the inner cylinder as a function of the following (subset of) parameters: g, R_0, R_i, m, ρ , and μ .



SOLUTION:

First determine the velocity profile of the fluid within the annulus. Make the following assumptions:

1. steady flow
$$\Rightarrow \frac{\partial u_r}{\partial t} = \frac{\partial u_\theta}{\partial t} = \frac{\partial u_z}{\partial t} = 0$$

2. gravity acts in the z-direction $\Rightarrow f_z = g, f_r = 0, f_\theta = 0$

2. gravity acts in the z-direction
$$\Rightarrow f_z = g, f_r = 0, f_\theta = 0$$

3. fully-developed flow in the z-direction
$$\Rightarrow \frac{\partial u_r}{\partial z} = \frac{\partial u_\theta}{\partial z} = \frac{\partial u_z}{\partial z} = 0$$

4. the flow is axi-symmetric and there is no swirl velocity
$$\Rightarrow \frac{\partial u_r}{\partial \theta} = \frac{\partial u_{\theta}}{\partial \theta} = \frac{\partial u_z}{\partial \theta} = 0$$
, $u_{\theta} = 0$

5. no pressure gradients in the z direction
$$\Rightarrow \frac{\partial p}{\partial z} = 0$$

Consider the continuity equation.

$$\frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0 \implies \frac{\partial(ru_r)}{\partial r} = 0 \implies ru_r = \text{constant}$$
(1)

Note that from assumptions 3 and 4, u_r is not a function of either θ or z. Since there is no radial flow at r = R_i or $r = R_o$, the constant in the previous equation must be zero. Thus,

$$u_r = 0 \pmod{6}$$

Now consider the Navier-Stokes equations.

$$\rho \left[\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta^2}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta^2}{r} + u_z \frac{\partial u_r}{\partial z} \right] = -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \underbrace{u_r}{\theta} \right) \right) \right] + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} + \frac{\partial^2 u_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} \right] + \rho \underbrace{f_r}_{\theta} = 0(\# 2)$$

$$(3)$$

$$\Rightarrow \frac{\partial p}{\partial r} = 0 \tag{4}$$

$$\rho \left(\frac{\partial u_{\theta}}{\partial t} + \underbrace{u_{r}} \frac{\partial u_{\theta}}{\partial r} + \underbrace{u_{\theta}}_{r} \frac{\partial u_{\theta}}{\partial \theta} + \underbrace{u_{r}}_{r} \frac{\partial u_{\theta}}{\partial \theta} + \underbrace{u_{r}}_{r} u_{\theta}}_{=0(\#4)} + \underbrace{u_{z}} \frac{\partial u_{\theta}}{\partial z} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left| \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \underbrace{u_{\theta}}_{=0(\#4)} \right) \right) \right| + \frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}} + \underbrace{\partial^{2} u_{\theta}}_{=0(\#3,\#4)} + \underbrace{\partial^{2} u_{r}}_{=0(\#4,\#6)} +$$

$$\Rightarrow \frac{\partial p}{\partial \theta} = 0 \tag{6}$$

$$\rho\left(\underbrace{\frac{\partial u_z}{\partial t} + \underbrace{u_r}_{=0(\#1)} \frac{\partial u_z}{\partial r} + \underbrace{\frac{u_\theta}{\partial \theta} \frac{\partial u_z}{\partial \theta}}_{=0(\#4)} + u_z\underbrace{\frac{\partial u_z}{\partial z}}_{=0(\#3)}\right) = -\underbrace{\frac{\partial p}{\partial z}}_{=0(\#5)} + \mu\left[\frac{1}{r}\underbrace{\frac{\partial}{\partial r}\left(r\frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2}\underbrace{\frac{\partial^2 u_z}{\partial \theta^2}}_{=0(\#4)} + \underbrace{\frac{\partial^2 u_z}{\partial z^2}}_{=0(\#3)}\right] + \rho\underbrace{\frac{f_z}{g}}_{=g(\#2)}$$

$$(7)$$

$$\Rightarrow 0 = \mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \rho g \tag{8}$$

Note that since u_z is not a function of θ (assumption #4) or z (assumption #3), then $u_z = u_z(r)$ and the partial differentials in Eqn. (8) may be written as ordinary differentials. Solve the ODE given in Eqn. (8).

$$\frac{d}{dr}\left(r\frac{du_z}{dr}\right) = -\frac{\rho g}{\mu}r$$

$$r\frac{du_z}{dr} = -\frac{\rho g}{2\mu}r^2 + c_1$$

$$\frac{du_z}{dr} = -\frac{\rho g}{2\mu}r + \frac{c_1}{r}$$

$$u_z = -\frac{\rho g}{4\mu}r^2 + c_1 \ln r + c_2$$
(9)

Apply the following boundary conditions to determine the constants c_1 and c_2

no-slip at
$$r = R_0$$
: $u_z (r = R_o) = 0 \implies 0 = -\frac{\rho g}{4\mu} R_o^2 + c_1 \ln R_o + c_2$ (10)

no-slip at
$$r = R_i$$
: $u_z(r = R_i) = V \implies V = -\frac{\rho g}{4\mu} R_i^2 + c_1 \ln R_i + c_2$ (11)

First determine c_1 by subtracting Eqn. (10) from Eqn. (11).

$$V = -\frac{\rho g}{4\mu} \left(R_i^2 - R_o^2 \right) + c_1 \ln \frac{R_i}{R_o}$$

$$c_1 = \frac{\left[V + \frac{\rho g}{4\mu} \left(R_i^2 - R_o^2 \right) \right]}{\ln \frac{R_i}{R_o}}$$
(12)

Find c_2 by applying the no-slip condition at $r = R_0$:

$$0 = -\frac{\rho g}{4\mu} R_o^2 + \frac{\left[V + \frac{\rho g}{4\mu} \left(R_i^2 - R_o^2\right)\right]}{\ln \frac{R_i}{R_o}} \ln R_o + c_2 \tag{13}$$

$$c_{2} = \frac{\rho g}{4\mu} R_{o}^{2} - \frac{\left[V + \frac{\rho g}{4\mu} \left(R_{i}^{2} - R_{o}^{2}\right)\right]}{\ln \frac{R_{i}}{R_{o}}} \ln R_{o}$$
(14)

Perform a force balance on a small length of the cylinder. $\sum F_{z} = 0 = mdzg + \tau_{rz}\big|_{r=R_{i}} 2\pi R_{i}dz$ $\tau_{rz}\big|_{r=R_{i}} = -\frac{mg}{2\pi R_{i}}$ $\tau_{rz}\big|_{r=R_{i}} 2\pi R_{i}dz$ (15)(16)

Since the fluid is Newtonian:

$$\tau_{rz} = \mu \frac{du_z}{dr} \implies \tau_{rz}|_{r=R_i} = \mu \left[-\frac{\rho g}{2\mu} r + \frac{c_1}{r} \right]_{r=R_i} = \mu \left\{ -\frac{\rho g}{2\mu} R_i + \frac{\left[V + \frac{\rho g}{4\mu} \left(R_i^2 - R_o^2 \right) \right]}{R_i \ln \frac{R_i}{R_o}} \right\}$$
(17)

Substitute Eqn. (17) into Eqn. (16) and solve for V.

$$\mu \left\{ -\frac{\rho g}{2\mu} R_i + \frac{\left[V + \frac{\rho g}{4\mu} \left(R_i^2 - R_o^2\right)\right]}{R_i \ln \frac{R_i}{R_o}} \right\} = -\frac{mg}{2\pi R_i}$$

$$V = \left(R_i \ln \frac{R_i}{R_o}\right) \left(\frac{\rho g}{2\mu} R_i - \frac{mg}{2\pi R_i \mu}\right) - \frac{\rho g}{4\mu} \left(R_i^2 - R_o^2\right)$$
(19)

$$V = \left(R_i \ln \frac{R_i}{R_o}\right) \left(\frac{\rho g}{2\mu} R_i - \frac{mg}{2\pi R_i \mu}\right) - \frac{\rho g}{4\mu} \left(R_i^2 - R_o^2\right)$$
(19)