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3. Poiseuille Flow 
 
Consider the steady flow of an incompressible, constant viscosity, Newtonian fluid within an infinitely 
long, circular pipe of radius, R. 
 
 
 
 
 
 
 
 
 
We’ll make the following assumptions: 

1. The flow is axi-symmetric and there is no “swirl” velocity. 
   
⇒ ∂

∂θ
!( ) = 0  and  uθ = 0  

2. The flow is steady.      
   
⇒ ∂
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3. The flow is fully-developed in the z-direction.   0r zu u
z z

∂ ∂
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4. There are no body forces.     0r zf f fθ⇒ = = =  
 
Let’s first examine the continuity equation: 
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From assumptions #1 and #3 we see that: 
constant rru =  

Since there is no flow through the walls, the constant must be equal to zero and thus: 
0ru =  (call this condition #5) 

 
Now let’s examine the Navier-Stokes equation in the z-direction: 
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We can simplify this equation using our assumptions: 
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Note that in the previous derivation the fact that uz is a function only of r has been used to change the 
partial derivatives to ordinary derivatives.  Furthermore, examining the Navier-Stokes equations in the r 
and θ directions demonstrates that the pressure, p, is a function only of z and thus ordinary derivatives can 
be used when differentiating the pressure with respect to z. 
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Now let’s apply boundary conditions to determine the unknown constants c1 and c2.  First, note that the 
fluid velocity in a pipe must remain finite as r→0 so that the constant c1 must be zero (this is a type of 
kinematic boundary condition).  Also, the pipe wall is fixed so that we have uz(r=R)=0 (no-slip condition).  
After applying boundary conditions we have: 
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 Poiseuille Flow in a Circular Pipe 

 
 
Notes: 
 
1. The velocity profile is a paraboloid with the maximum velocity occurring along the centerline.  The 

average velocity in the pipe is found from: 
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where umax is the maximum fluid velocity. 
 
2. As with planar Couette-Poiseuille flow, we can determine stresses using the constitutive relations for a 

Newtonian fluid.  The shear stress that the pipe walls apply to the fluid, τw, is: 
4

2w
R dp u
dz R

µτ −⎛ ⎞= =⎜ ⎟⎝ ⎠
 

where u  is the average velocity in the pipe.  Note that an alternate method for determining the average 
wall shear stress, which in this case is equal to the exact wall shear stress, is to balance shear forces 
and pressure forces on a small slice of the flow as shown below. 
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In engineering applications it is common to express the average shear stress in terms of a (Darcy) 
friction factor, fD, which is defined as: 
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where D=2R is the pipe diameter and Re is the Reynolds number.  The Darcy friction factor commonly 
appears in the Moody chart for incompressible, viscous pipe flow.  Note again that this solution is only 
valid only for a laminar flow.  The condition for the flow to remain laminar is found experimentally to 
be: 

Re 2300uDρ
µ

≡ <      

 
3. We can also use the general solution (before applying boundary conditions) to determine the flow 

between two concentric cylinders by applying different boundary conditions.  For example, two fixed 
cylinders will have the boundary conditions:  uz(r=RI)=0 and uz(r=RO)=0  where RI and RO are the 
inner and outer cylinder radii. 
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4. Laminar flow in an elliptical cross-section pipe can be determined by considering the simplified 
Navier-Stokes equation in the z-direction but using Cartesian coordinates (assuming ux=uy=0): 
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∂ ∂
 (Poisson’s equation!) 

where z is the coordinate along the centerline of the pipe.  Note that the pipe wall boundary is the 
ellipse given by:   
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where a and b are the lengths of the major and minor axes.  Since we must satisfy the no-slip boundary 
condition at the pipe walls, let’s guess that the solution has the form: 
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since this profile automatically satisfies the boundary condition.  The quantity α is an unknown 
constant.  To determine if this is indeed a valid solution to the fluid equations, we first note that it 
satisfies the continuity equation (ux=uy=0 and uz is not a function of z).  If we substitute into the z-
component of the Navier-Stokes equations (Poisson’s equation above) we find that our guess for the 
velocity distribution is valid if the constant α is given by: 
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which means that the velocity profile for an elliptical pipe is given by: 

( )
2 22 2

2 2
1

2z
a b dp x y

u
dz a ba bµ

⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

velocity profile in a pipe of elliptical cross-section 
 
For very complex cross-sections, we can determine the velocity profile by solving Poisson’s equation 
numerically. 
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