The motion of a hydraulic cylinder is cushioned at the end of its stroke by a piston that enters a hole as shown. The cavity and cylinder are filled with hydraulic fluid of uniform density, ρ .

a. Obtain an expression for the average velocity, V_{out} , at which hydraulic fluid escapes from the cylindrical hole assuming that the cylinder moves at a constant velocity, V_{cyl} .

- b. Determine the velocity, V_{out} , with relative uncertainty, for the following conditions.
 - $\rho = 900 \pm 5 \text{ kg/m}^3$
 - $L = 100 \pm 0.1 \text{ mm}$
 - $R = 15 \pm 0.1 \text{ mm}$
 - $r = 10 \pm 0.1 \text{ mm}$
 - $V_{\rm cyl} = 100 \pm 1 \text{ mm/s}$

SOLUTION:

Apply conservation of mass to a control volume that deforms to follow the piston as shown below.

$$\frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \mathbf{u}_{rel} \cdot d\mathbf{A} = 0$$

ere
$$\frac{d}{dt} \int_{CV} \rho dV = \rho \frac{d}{dt} \left[\pi R^2 L - \pi r^2 x \right] = -\rho \pi r^2 \frac{dx}{dt} = -\rho \pi r^2 V_{\text{cyl}}$$

$$\int_{CS} \rho \mathbf{u}_{\text{rel}} \cdot d\mathbf{A} = \rho V_{\text{out}} \pi \left(R^2 - r^2 \right)$$

$$\int_{CS} \rho \mathbf{u}_{\text{rel}} \cdot d\mathbf{A} = \rho V_{\text{out}} \pi \left(R^2 - r^2 \right)$$

Substitute and solve for
$$V_{\text{out}}$$
.

$$-\rho \pi r^2 V_{\text{cyl}} + \rho V_{\text{out}} \pi \left(R^2 - r^2\right) = 0$$

$$V_{\text{out}} = V_{\text{cyl}} \frac{r^2}{R^2 - r^2}$$

$$V_{\text{out}} = V_{\text{cyl}} \frac{r^2}{R^2 - r^2}$$

$$\therefore V_{\text{out}} = V_{\text{cyl}} \frac{1}{\left(\frac{R}{r}\right)^2 - 1}$$

The total relative uncertainty in V_{out} is given by:

$$u_{V_{\text{out}}} = \left[u_{V_{\text{out}}, V_{\text{cyl}}}^2 + u_{V_{\text{out}}, R}^2 + u_{V_{\text{out}}, r}^2 \right]^{1/2}$$

where

$$\begin{split} u_{V_{\text{out}},V_{\text{cyl}}} &= \frac{1}{V_{\text{out}}} \frac{\partial V_{\text{out}}}{\partial V_{\text{cyl}}} \delta V_{\text{cyl}} = \frac{\left(\frac{R}{r}\right)^2 - 1}{V_{\text{cyl}}} \frac{1}{\left(\frac{R}{r}\right)^2 - 1} \delta V_{\text{cyl}} = \frac{\delta V_{\text{cyl}}}{V_{\text{cyl}}} = u_{V_{\text{cyl}}} \\ u_{V_{\text{out}},R} &= \frac{1}{V_{\text{out}}} \frac{\partial V_{\text{out}}}{\partial R} \delta R = \frac{\left(\frac{R}{r}\right)^2 - 1}{V_{\text{cyl}}} \left\{ -\frac{2R}{r^2} \frac{V_{\text{cyl}}}{\left[\left(\frac{R}{r}\right)^2 - 1\right]^2} \right\} \delta R = -\frac{2R}{r^2} \frac{\delta R}{\left(\frac{R}{r}\right)^2 - 1} \delta R = \frac{-2}{1 - \left(\frac{r}{R}\right)^2} \frac{\delta R}{R} = \frac{-2u_R}{1 - \left(\frac{r}{R}\right)^2} \\ u_{V_{\text{out}},r} &= \frac{1}{V_{\text{out}}} \frac{\partial V_{\text{out}}}{\partial r} \delta r = \frac{\left(\frac{R}{r}\right)^2 - 1}{V_{\text{cyl}}} \left\{ -\frac{-2R^2}{r^3} \frac{V_{\text{cyl}}}{\left[\left(\frac{R}{r}\right)^2 - 1\right]^2} \right\} \delta r = \frac{2R^2}{r^3} \frac{\delta r}{\left(\frac{R}{r}\right)^2 - 1} \delta r = \frac{2}{1 - \left(\frac{r}{R}\right)^2} \frac{\delta r}{r} = \frac{2u_r}{1 - \left(\frac{r}{R}\right)^2} \end{split}$$

Substitute and simplify.

$$u_{V_{\text{out}}} = \left[u_{V_{\text{cyl}}}^2 + \frac{4u_R^2}{\left[1 - \left(\frac{r}{R} \right)^2 \right]^2} + \frac{4u_r^2}{\left[1 - \left(\frac{r}{R} \right)^2 \right]^2} \right]^{\frac{1}{2}}$$

Using the given data:

$$V_{\text{out}} = 80 \text{ mm/s}$$

$$u_{V_{\text{cyl}}} = \frac{1 \text{ mm}}{100 \text{ mm}} = 1.0 * 10^{-2}$$

$$u_{R} = 0.1 \text{ mm}/15 \text{ mm} = 6.7 * 10^{-3}$$

$$u_{r} = 0.1 \text{ mm}/10 \text{ mm} = 1.0 * 10^{-2}$$

$$r/R = 10 \text{ mm}/15 \text{ mm} = 6.7 * 10^{-1}$$

$$\therefore u_{V_{\text{out}}} = 4.5 * 10^{-2} \Rightarrow \delta V_{\text{out}} = 3.4 \text{ mm/s}$$

$$\therefore V_{\text{out}} = 80.0 \pm 3.6 \text{ mm/s}$$