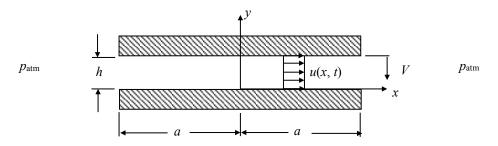
Two parallel plates of width, 2a, (and unit depth) are separated by a gap of height, h, which changes with time. The upper plate approaches the lower plate at a constant speed, V. The space between the plates is filled with a frictionless, incompressible gas of density, ρ . Assume that the velocity is uniform across the gap width (y direction) so that u=u(x, t).

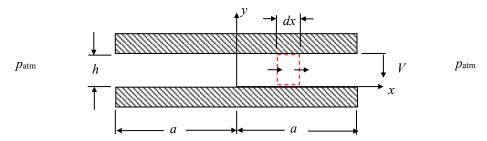
Obtain algebraic expressions for:

- a. the velocity distribution, u(x, t).
- b. the pressure distribution in the gap, p(x, t). The pressure outside of the gap is atmospheric pressure. Note: You do not need to use Bernoulli's equation to solve this problem.



SOLUTION:

Apply conservation of mass to the control volume shown below.



$$\frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \mathbf{u}_{rel} \cdot d\mathbf{A} = 0$$

where

$$\frac{d}{dt} \int_{CV} \rho dV = \frac{d}{dt} (\rho h dx) = \rho \frac{dh}{dt} dx = -\rho V dx \tag{1}$$

$$\int_{CS} \rho \mathbf{u}_{rel} \cdot d\mathbf{A} = -\left[\left(\rho u h \right) + \frac{\partial}{\partial x} \left(\rho u h \right) \left(-\frac{1}{2} dx \right) \right] + \left[\left(\rho u h \right) + \frac{\partial}{\partial x} \left(\rho u h \right) \left(\frac{1}{2} dx \right) \right] \\
= \frac{\partial}{\partial x} \left(\rho u h \right) dx = \rho \frac{\partial u}{\partial x} h dx$$
(2)

Substitute and simplify.

$$-\rho V dx + \rho \frac{\partial u}{\partial x} h dx = 0$$

$$\frac{\partial u}{\partial x} = \frac{V}{h}$$

$$u = V \frac{x}{h} + f(t)$$
 where $f(t)$ is an unknown function of time (Note: $u = u(x, t)$.)

Since the velocity at the center line of the plate is always zero, i.e. u(x = 0, t) = 0, then f(t) = 0.

$$\therefore u = V \frac{x}{h} \quad \text{(Note: } h = h(t) \Rightarrow u = u(x, t).\text{)}$$

Now apply the linear momentum equation in the x-direction to the same control volume using the given fixed frame of reference.

$$\frac{d}{dt} \int_{CV} u_x \rho dV + \int_{CS} u_x \left(\rho \mathbf{u}_{rel} \cdot d\mathbf{A} \right) = F_{B,x} + F_{S,x}$$

where

$$\frac{d}{dt} \int_{CV} u_x \rho dV = \frac{d}{dt} \left(u \rho h dx \right) = \rho dx \left(u \frac{dh}{dt} + h \frac{\partial u}{\partial t} \right) = \rho dx \left(-uV + h \frac{\partial u}{\partial t} \right)$$
(4)

$$\int_{CS} u_x \left(\rho \mathbf{u}_{rel} \cdot d\mathbf{A} \right) = -\left[\left(u \rho u h \right) + \frac{\partial}{\partial x} \left(u \rho u h \right) \left(-\frac{1}{2} dx \right) \right] + \left[\left(u \rho u h \right) + \frac{\partial}{\partial x} \left(u \rho u h \right) \left(\frac{1}{2} dx \right) \right] \\
= \frac{\partial}{\partial x} \left(u \rho u h \right) dx = 2 \rho u \frac{\partial u}{\partial x} h dx$$
(5)

$$F_{B.x} = 0 ag{6}$$

$$F_{S,x} = \left[(ph) + \frac{\partial}{\partial x} (ph) \left(-\frac{1}{2} dx \right) \right] - \left[(ph) + \frac{\partial}{\partial x} (ph) \left(\frac{1}{2} dx \right) \right]$$

$$= -\frac{\partial}{\partial x} (ph) dx = -\frac{\partial p}{\partial x} h dx$$
(7)

Substitute and simplify.

$$\rho dx \left(-uV + h \frac{\partial u}{\partial t} \right) + 2\rho u \frac{\partial u}{\partial x} h dx = -\frac{\partial p}{\partial x} h dx \tag{8}$$

Substitute for u using the expression derived from conservation of mass.

$$\left[-\left(V\frac{x}{h}\right)V + h\left(V^2\frac{x}{h^2}\right) \right] + 2\left(V\frac{x}{h}\right)\left(V\frac{1}{h}\right)h = -\frac{1}{\rho}\frac{\partial p}{\partial x}h \tag{9}$$

$$2V^2 \frac{x}{h} = -\frac{1}{\rho} \frac{\partial p}{\partial x} h$$

$$\frac{\partial p}{\partial x} = -2\rho V^2 \frac{x}{h^2}$$

$$p = -\rho V^2 \frac{x^2}{h^2} + f(t) \tag{10}$$

The pressure at x = a is p_{atm} for all times, i.e. $p(x = a, t) = p_{\text{atm}}$:

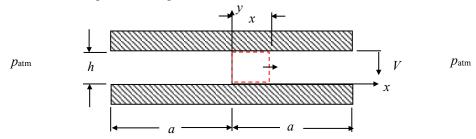
$$p_{\text{atm}} = -\rho V^2 \frac{a^2}{h^2} + f(t) \Rightarrow f(t) = p_{\text{atm}} + \rho V^2 \frac{a^2}{h^2}$$
 (11)

Substituting and simplifying gives:

$$p = -\rho V^{2} \frac{x^{2}}{h^{2}} + p_{\text{atm}} + \rho V^{2} \frac{a^{2}}{h^{2}}$$

$$\boxed{\frac{p - p_{\text{atm}}}{\frac{1}{2}\rho V^{2}} = 2\left[\left(\frac{a}{h}\right)^{2} - \left(\frac{x}{h}\right)^{2}\right]} \text{ (Note: } h = h(t) \Rightarrow p = p(x, t).)}$$
(12)

Now let's work the problem using the control volume shown below.



Conservation of Mass:

$$\frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho \mathbf{u}_{rel} \cdot d\mathbf{A} = 0$$

where

$$\frac{d}{dt} \int_{CV} \rho dV = \frac{d}{dt} \left[\rho h x \right] = \rho \frac{dh}{dt} x = -\rho V x \tag{13}$$

$$\int_{CS} \rho \mathbf{u}_{rel} \cdot d\mathbf{A} = \rho uh \quad \text{(Mass flux only through right side due to symmetry.)}$$
 (14)

Substitute and simplify.

$$-\rho Vx + \rho uh = 0$$

$$u = V\left(\frac{x}{h}\right)$$
 This is the same result as before! (15)

Linear Momentum Equation in the *x*-direction:

$$\frac{d}{dt} \int_{CV} u_x \rho dV + \int_{CS} u_x \left(\rho \mathbf{u}_{rel} \cdot d\mathbf{A} \right) = F_{B,x} + F_{S,x}$$

where

$$\frac{d}{dt} \int_{CV} u_x \rho dV = \frac{d}{dt} \int_{x=0}^{x=x} \rho u h dx = \frac{d}{dt} \int_{x=0}^{x=x} \rho \left(V \frac{x}{h} \right) h dx = \rho V \frac{d}{dt} \left(\int_{x=0}^{x=x} x dx \right) = 0$$
 (16)

(The result from conservation of mass has been used in simplifying the previous expression.)

$$\int_{CS} u_x \left(\rho \mathbf{u}_{rel} \cdot d\mathbf{A} \right) = \rho u^2 h = \rho V^2 \frac{x^2}{h} \quad \text{(Momentum flux only through right side due to symmetry.)}$$
 (17)

(The result from conservation of mass has been used in simplifying the previous expression.)

$$F_{B,x} = 0 ag{18}$$

$$F_{Sx} = p_{x=0}h - p_{x=x}h \tag{19}$$

Substitute and simplify

$$\rho V^2 \frac{x^2}{h} = p_{x=0} h - p_{x=x} h$$

$$p_{x=x} = p_{x=0} - \rho V^2 \frac{x^2}{h^2} \tag{20}$$

Since the pressure at x = a is p_{atm} , i.e. $p(x = a, t) = p_{atm}$:

$$p_{\text{atm}} = p_{x=0} - \rho V^2 \frac{a^2}{h^2} \Rightarrow p_{x=0} = p_{\text{atm}} + \rho V^2 \frac{a^2}{h^2}$$
 (21)

$$p_{x=x} = p_{\text{atm}} + \rho V^2 \frac{a^2}{h^2} - \rho V^2 \frac{x^2}{h^2}$$

$$\therefore \frac{p - p_{\text{atm}}}{\frac{1}{2} \rho V^2} = 2 \left[\left(\frac{a}{h} \right)^2 - \left(\frac{x}{h} \right)^2 \right]$$
 This is the same result as before! (22)