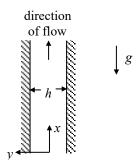
A Newtonian, incompressible fluid flows between the two infinite, vertical, parallel plates shown in the figure. Assume that the flow is steady and fully developed in the x direction and that there is a constant pressure gradient in the x direction, dp/dx.

Determine, by performing a force balance on a differential fluid element, an expression for the velocity component in the x direction.



SOLUTION:

$$\left(\tau_{yx} + \frac{d\tau_{yx}}{dy}dy\right)(dxdz)$$

$$\left(\tau_{yx} + \frac{d\tau_{yx}}{dy}dy\right)(dxdz)$$

$$\rho g dx dy dz$$

$$\left(\tau_{yx}\right)(dxdz)$$
element has dimensions dx , dy , and dz

Apply a force balance in the vertical direction (x-direction) on the differential fluid element shown,

$$\sum F_x = 0 = (p)(dydz) - \left(p + \frac{dp}{dx}dx\right)(dydz) - \left(\tau_{yx}\right)(dxdz) + \left(\tau_{yx} + \frac{d\tau_{yx}}{dy}dy\right)(dxdz) - \rho g dx dy dz, \tag{1}$$

by a force balance in the vertical direction (x-direction) on the differential fluid element shown,
$$\sum F_x = 0 = (p)(dydz) - \left(p + \frac{dp}{dx}dx\right)(dydz) - \left(\tau_{yx}\right)(dxdz) + \left(\tau_{yx} + \frac{d\tau_{yx}}{dy}dy\right)(dxdz) - \rho g dx dy dz, \qquad (1)$$

$$-\frac{dp}{dx} + \frac{d\tau_{yx}}{dy} = \rho g. \qquad (2)$$

Since the fluid is Newtonian,

$$\tau_{yx} = \mu \frac{du_x}{dy}.\tag{3}$$

Substituting Eq. (3) into Eq. (2) and simplifying,

$$-\frac{dp}{dx} + \mu \frac{d^2 u_x}{dx^2} = \rho g,\tag{4}$$

$$-\frac{dp}{dx} + \mu \frac{d^2 u_x}{dy^2} = \rho g,$$

$$\frac{d^2 u_x}{dy^2} = \frac{1}{\mu} \left(\rho g + \frac{dp}{dx} \right).$$
(4)

Note that since the flow is fully-developed and steady, the pressure gradient dp/dx must not be a function of either y or t. Thus, we can solve the differential equation in Eq. (5) to give, $\frac{du_x}{dy} = \frac{1}{\mu} \left(\rho g + \frac{dp}{dx} \right) y + c_1,$

$$\frac{du_x}{dy} = \frac{1}{u} \left(\rho g + \frac{dp}{dx} \right) y + c_1, \tag{6}$$

$$u_x = \frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) y^2 + c_1 y + c_2. \tag{7}$$

The constants c_1 and c_2 can be found from the boundary conditions,

no-slip at the walls:
$$u_x(y = \pm h/2) = 0 \Rightarrow$$
 (8)

$$\frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^2}{4} + c_1 \frac{h}{2} + c_2 = 0, \tag{9}$$

$$\frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^2}{4} - c_1 \frac{h}{2} + c_2 = 0. \tag{10}$$

no-slip at the walls:
$$u_x(y = \pm h/2) = 0 \Rightarrow$$
 (8)

$$\frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^2}{4} + c_1 \frac{h}{2} + c_2 = 0,$$
 (9)

$$\frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^2}{4} - c_1 \frac{h}{2} + c_2 = 0.$$
 (10)
Add Eqs. (9) and (10),

$$\frac{1}{\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^2}{4} + 2c_2 = 0 \Rightarrow c_2 = -\frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^2}{4}.$$
 (11)
Subtract Eq. (10) from Eq. (9)

Subtract Eq. (10) from Eq. (9), $c_1 h = 0 \implies c_1 = 0$.

$$c_1 h = 0 \Rightarrow c_1 = 0.$$
 (12)

Thus.

$$u_{x} = \frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) y^{2} - \frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \frac{h^{2}}{4},$$

$$u_{x} = \frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \left(y^{2} - \frac{h^{2}}{4} \right).$$
(13)

$$u_x = \frac{1}{2\mu} \left(\rho g + \frac{dp}{dx} \right) \left(y^2 - \frac{h^2}{4} \right). \tag{14}$$