A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 $^{\circ}$ C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side.

SOLUTION:

Determine the Reynolds number at the trailing edge of the plate to see if it's laminar.

$$Re_L = \frac{UL}{V}$$
 (The flow is considered laminar if $Re < 1*10^6$.)

When L = 1.10 m then $Re_L = 55,200 \Rightarrow$ laminar flow. When L = 0.55 m then $Re_L = 27,500 \Rightarrow$ laminar flow.

Now determine the drag on the plate using the drag coefficient, c_D , for laminar flat plate flow (the Blasius solution).

$$D = \left(\frac{1}{2}\rho U^2\right) \underbrace{\left(2LW\right)}_{\text{top and bottom faces}} c_D$$

$$\therefore D = \left(\frac{1}{2}\rho U^2\right) \left(2LW\right) \left(\frac{1.328}{\text{Re}_L^{1/2}}\right) \tag{2}$$

When L = 1.10 m, W = 0.55 m, $Re_L = 55,200$, and D = 107 N.

When
$$L = 0.55$$
 m, $W = 1.10$ m, $Re_L = 27,500$, and $D = 152$ N

Note that the drag is greater when the short side is aligned with the flow. Why? Because from Eqn. (2) we observe that the drag varies with \sqrt{L} but is proportional to W. Hence the drag will increase more rapidly with increasing width than with increasing length.