

<u>https://www.youtube.com/watch?v=vIJ50aUiBgM</u> (old video, but shows the basics well) <u>https://www.youtube.com/watch?v=zA_19bHxEYg</u> (newer technology, good animations) <u>https://www.youtube.com/watch?v=saPGX-1qC4M</u> (hands-on video)

ME 200 (Thermodynamics I)

Air Standard Analysis

Two main types of reciprocating internal combustion engines

- spark-ignition engine
- compression-ignition engine

Four-stroke cycle

© 2007 Encyclopædia Britannica, Inc.

Two revolutions of the crankshaft to complete four strokes.

Air Standard Analysis

- Highly simplified to provide qualitative understanding
- Fixed mass of air modeled as an ideal gas.
- Combustion modeled as a heat addition process.
- No intake or exhaust processes.
- Exhaust modeled as a constant volume heat removal process.
- All processes are internally reversible.

Cold air standard analysis

• An air standard analysis that assumes constant specific heats (perfect gas assumption).

(Image from Moran et al., 7th ed.)

Mean Effective Pressure (MEP):

$$MEP \equiv \frac{W_{out,net}}{V_{bdc} - V_{tdc}}$$

Compression ratio, $r \equiv \frac{v_{bdc}}{v_{tdc}} = \frac{v_{bdc}}{v_{tdc}} > 1$

Two and a half cycles to be considered: Otto cycle, Diesel cycle, dual cycle

- Define the cycle paths draw on *p*-*v* and *T*-*s* plots
- Apply the 1st Law to determine
 - Net work out
 - Heat transfer
 - Thermal efficiency
- Make use of compression ratio and MEP
- Examine trends

TABLE 9.1		191922 000	20
Ideal Gas Model Review			and the second second
Equations of state:	p pv	v = RT v = mRT	(3. ₃₂₎ (3. ₃₃₎
Changes in u and h:	$u(T_2) - u(h(T_2) - h(h(T_2)) - h(h(T_2)$	$T_{i} = \int_{T_{i}}^{T_{i}} c_{v}(T) dT$ $T_{i} = \int_{T_{i}}^{T_{i}} c_{p}(T) dT$	(3.40) (3.43)
and a sector of the reserve and		Variable Specific Heats	
Constant Specific Heat $u(T_2) - u(T_1) = c_v(T_2 - T_1)$ $h(T_2) - h(T_1) = c_p(T_2 - T_1)$ See Tables A-20, 21 for data.	s (3.50) (3.51)	u(T) and $h(T)$ are evaluated from app tables: Tables A-22 for air (mass basi A-23 for other gases (molar basis).	ropriate s) and
Changes in s:		$s(T_2, p_2) - s(T_1, p_1) =$	
$s(T_2, v_2) - s(T_1, v_1) =$ $\int_{T_1}^{T_2} c_v(T) \frac{dT}{T} + R \ln \frac{v_2}{v_1}$	(6.17)	$\int_{T_1}^{T_2} c_p(T) \frac{dT}{T} - R \ln \frac{p_2}{p_1}$	(6.18)
Constant Specific Heats		Variable Specific Heats	
$s(T_2, v_2) - s(T_1, v_1) = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$	(6.21)	$s(T_2, p_2) - s(T_1, p_1) =$ $s^{\circ}(T_2) - s^{\circ}(T_1) - R \ln \frac{p_2}{p_1}$	(6.20a)
$c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$ See Tables A-20, 21 for data.	(6.22)	where <i>s</i> ^o (7) is evaluated from appr tables: Tables A-22 for air (mass b A-23 for other gases (molar basis).	opriate asis) and
Relating states of equal specific entropy: $\Delta s = 0$:			
Constant Specific Heats		Variable Specific Ursten Air C	
$ \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{(k-1)/k} $ $ T_2 \qquad (v_1)^{k-1} $	(6.43)	$\frac{p_2}{p_1} = \frac{p_{r_2}}{p_{r_1}}$ (air only) $v_2 = v_{r_2}$	(6.4
$\overline{T_1} = \left(\frac{1}{v_2}\right)$	(6.44)	$\frac{1}{v_1} = \frac{v_2}{v_{r_1}} $ (air only)	(6.4
$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^k$ where $k = c_p/c_v$ is given in Tables A for several gases.	(6.45) -20	where p_r and v_r are provided for a in Tables A-22.	air

Table 9.1 from Moran et al.