
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

4.7. The Second Law of Thermodynamics for a Control Volume

As with COM, the LME, the AME, and the First Law, we will convert our system form of the Second Law
to a control volume form using the Reynolds Transport Theorem. To do so, we should first write the Second
Law in terms of time rates of change (refer to Eq. (3.149)),

DS

Dt|{z}
rate of increase

of entropy in system

=

ˆ
b

�Q̇into sys

T| {z }
rate at which entropy
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heat transfer through

the boundary
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rate at which

entropy is produced
in the system due to

internal irreversibilities

, (4.137)

where the Lagrangian derivative notation has been used to remind us that we’re following a system. Recall
that �̇ � 0 with the equality holding only for internally reversible processes. Now let’s write the left-hand
side of the equation in terms of an integral so that we can have variations in the system specific entropy,

D

Dt

ˆ
Vsys

s⇢dV =

ˆ
b

�Q̇into sys

T
+ �̇. (4.138)

where s is the specific entropy. After applying the Reynolds Transport Theorem to convert to a control
volume perspective,
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(4.139)

Note that the subscript on the heat transfer integral was changed from “b” for “boundary” to “CS” for
control surface. This is the control volume form of the Second Law of Thermodynamics (aka the Entropy
Equation)!

Notes:

(1) The rate of entropy increase within the control volume (the first term on the left-hand side of
Eq. (4.139)) may also be written as,

dSCV

dt
=

d

dt

ˆ
CV

s⇢dV. (4.140)

The net flow rate of entropy out of the control volume due to mass flowing out of and into the
control volume may be written as,

X

all outlets

sṁ�
X

all inlets

sṁ =

ˆ
CS

s (⇢urel · dA) . (4.141)

Combined together, the Second Law for a control volume may then be written as,

dSCV

dt
=

X

all inlets

ṁs�
X

all outlets

ṁs+

ˆ
CS

�Q̇into CV

T
+ �̇. (4.142)

(2) Recall that entropy production is related to the degree of irreversibility in a system/control volume.
The larger the change in entropy, the further the system/control volume is from being reversible or
ideal. Hence, Eq. (4.139) can be used to determine situations that result in ine�ciencies.

Let’s consider some examples to see how the Second Law is applied to CVs.
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Steam enters a turbine operating at steady state at 1 MPa (abs) and 200 °C and exits at 40 °C with a quality 
of 83%.   Stray heat transfer and changes in kinetic and potential energy are negligible.  Determine: 
a. the power developed by the turbine per unit mass of steam, and 
b. the change in the specific entropy from the inlet to the exit per unit mass of steam. 
 
 
SOLUTION: 
To determine the power developed by the turbine, apply the 1st Law to a control volume surrounding the 
turbine. 
 
 
 
 
 
 
 

, (1) 

where, 
dECV/dt = 0  (steady flow) 
D(1/2V2) and D(gz) are assumed to be negligibly small compared to the specific enthalpy 

  = 0 (adiabatic flow) 
   (from conservation of mass) 

Þ  . (2) 

The specific enthalpies are, 
h1 = 2827.9 kJ/kg (@ 200 °C and 1 MPa = 10 bar Þ superheated vapor; from Table A-4 in Moran 

et al., 7th ed.) 
h2 = x2hv + (1 – x2)hl   (3) 

x2 = 0.83, hv = 2574.3 kJ/kg, hl = 167.57 kJ/kg   
(@ 40 °C, two-phase, liquid-vapor state; from Table A-2 in Moran et al., 7th ed.) 

Þ h2 = 2165.1 kJ/kg. 

Þ   = -662.8 kJ/kg (work is being done by the system). 

 
The rate of entropy production per unit mass of steam may be found using, 

, (4) 

where, 

  (steady flow assumed), (5) 

  (mass flow rate constant from Cons. of Mass), (6) 

  (adiabatic process), (7) 

=>  . (8) 
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The change in specific entropy is, 
s1 = 6.6940 kJ/(kg.K) (@ 200 °C and 1 MPa = 10 bar Þ superheated vapor; from Table A-4 in Moran 

et al., 7th ed.) 
s2 = x2sv + (1 – x2)sl   (9) 

x2 = 0.83, sv = 8.2570 kJ/kg, sl = 0.5725 kJ/kg   
(@ 40 °C, two-phase, liquid-vapor state; from Table A-2 in Moran et al., 7th ed.) 

Þ s2 = 6.9506 kJ/(kg.K). 
Þ s2 – s1 = 0.2566 kJ/(kg.K). 
Þ  = 0.2566 kJ/(kg.K). 

Note that the process is not internally reversible since . 
 
A plot of the process on a T-s diagram is shown in the following figure. 
 
 
 
 
 
 
 
 

 !σ !m

 !σ > 0

s 

T 

1 

2 

200 °C 

10 bar 
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40 °C 
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Consider a steel rod steadily conducting heat from thermal reservoir 1 into thermal reservoir 2.  Using the entropy 
rate balance equation, show that T1 > T2.  Note that T1 and T2 are absolute temperatures.  
 
 
 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
Apply the entropy rate balance equation to a control volume surrounding the steel rod, 

, (1) 

where, 

   (steady), (2) 

  (no flow in or out of the CV), (3) 

,   (4) 

where, from the 1st Law applied to the same CV, the rate of heat transfer through the rod remains 
constant.  In addition, the temperature at the left boundary, where the heat enters the CV, i.e., 

, is T1 and the temperature at the right boundary, where heat leaves the CV, i.e., 

, is T2. 

Substitute and simplify, 

, (5) 

. (6) 

Since , T1 ≥ T2.  The equality, T1 = T2, results in an internally reversible process whereas a finite temperature 
difference, T1 > T2, results in an internally irreversible process. 
 
This result also demonstrates the equivalence between entropy generation via heat transfer and the Clausius 
statement of the 2nd Law.  
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Electronic components are mounted on the inner surface of a horizontal cylindrical duct with an inner 

diameter of 0.2 m.  To prevent overheating of the electronics, the cylinder is cooled by a stream of air 

flowing through the cylinder and by convection from its outer surface.  Air enters the duct at 25 °C, 1 bar 

(abs), and a speed of 0.3 m/s, and exits at 40 °C with negligible changes in kinetic energy and pressure.  

Convective cooling occurs on the cylinder’s outer surface to the surroundings, which are at 25 °C, in accord 
with hA = 3.4 W/K, where h is the heat transfer coefficient and A is the cylinder’s surface area.  The 

electronic components require 0.20 kW of electric power.  For steady state conditions, determine: 

a. the mass flow rate of air through the cylinder, in kg/s,  

b. the temperature on the outer surface of the duct, and 

c. the rate of entropy production in the air passing through the duct. 

 

 

 

 

 

 

 
 

 

 

SOLUTION: 

The mass flow rate through the cylinder is, 

,  (1) 

where the ideal gas law has been used.  Using the given data, 

p1 = 1 bar (abs) = 1*105 Pa 

Rair = 287 J/(kg.K) 
T1 = 25 °C = 298 K 

V1 = 0.3 m/s 

D1 = 0.2 m 

=>   = 0.011 kg/s. 

 

Now apply the 1st Law the control volume shown in the figure, 

, (2) 

where, 

  (steady conditions), (3) 

, (4) 

(assuming changes in kinetic energy and potential energy are negligible; the mass flow at the inlet 

and outlet are the same from conservation of mass; the air behaves as a perfect gas), 

  (Newton’s Law of Convection), (5) 

  (given power for electronics). (6) 
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Substitute and simplify, 

, (7) 

, 

where, 

Tsurr = 25 °C = 298 K (given), 

  = 0.011 kg/s (found previously), 

cp = 1.005 kJ/(kg.K)  (Table A-20 in Moran et al., 8th ed.) 

T1 = 25 °C = 298 K (given), 
T2 = 40 °C = 313 K (given), 

 (given), 

hA = 3.4 W/K  (given), 

=>  Tsurface = 308 K = 35.1 °C. 

 

 
The rate at which entropy is produced in the air passing through the duct is found by applying the entropy 

equation to the same control volume, 

, (8) 

where 

   (steady), (9) 

, (10) 

(where a perfect gas assumption has been used to determine the change in specific entropy), 

, (11) 

(Note that the absolute temperature in the denominator is the temperature where the heat transfer 

occurs on the control surface boundary.) 

 

Substitute and simplify, 

, (12) 

. (13) 

 

Using the given data, 

Tsurr = 25 °C = 298 K (given), 

  = 0.011 kg/s (found previously), 

cp = 1.005 kJ/(kg.K)  (Table A-20 in Moran et al., 8th ed.)  
T1 = 25 °C = 298 K (given), 

T2 = 40 °C = 313 K (given), 

p2 = p1  (given),  
Tsurface = 308 K  (found previously), 

 (given), 

hA = 3.4 W/K  (given),  
=>  = 0.653 W/K. 
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Air enters a diffuser operating at steady state at 4 bar (abs) and 290 K with a speed of 512 m/s.  The exit 
speed is 110 m/s.  For adiabatic operation with no internal irreversibilities, determine: 
a. the exit temperature, in K, and  
b. the exit pressure, in bar (abs).  
 
 
SOLUTION: 
Apply the 1st Law to the control volume shown in the figure, 

, (1) 

where,  

 (steady), (2) 

, (3) 

(Changes in potential energy are assumed negligible since we’re dealing with a gas.) 
  (adiabatic process), (4) 

  (no “other” work), (5) 

=>  . (6) 

 
Treating air as an ideal gas, 

h1(T1 = 290 K) = 290.16 kJ/kg  (from Table A-22 in Moran et al., 8th ed.), 
V1 = 512 m/s, 
V2 = 110 m/s, 
=>  h2 = 415.18 kJ/kg  =>  T2 = 414 K   (interpolating in Table A-22). (7) 
 

The exit pressure may be found using the change in entropy relation for an ideal gas, 

 , (8)  

where, 
s2 – s1 = 0 since the process is adiabatic and internally reversible => isentropic (given), 
s02(T2 = 414 K) =  2.02676 kJ/(kg.K)  (interpolating in Table A-22), 
s01(T1 = 290 K) =  1.66802 kJ/(kg.K)  (Table A-22), 
Rair = 0.287 kJ/(kg.K), 
p1 = 4 bar (abs), 
=>  p2 = 14.0 bar (abs). 
  

 
If we assumed the air behaves as a perfect gas with cp = 1.005 kJ/(kg.K)  (Table A-20 in Moran et al., 8th 
ed.), then Eq. (6) may be written as, 

  =>  T2 = 414 K  (Same answer as before!) (9) 

 
In addition, for a perfect gas undergoing an isentropic process, 

   =>   p2 = 13.9 bar (abs)  (within 1% of the answer found previously) (10)  
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Note that if the flow had internal irreversibilities, then the entropy equation applied to the control volume 
gives, 

, (11) 

where, 

  (steady flow), (12) 

  (adiabatic flow), (13) 

=>    where  if the flow is internally irreversible (= 0 if internally reversible) (14) 

Substituting into Eq. (8) and solving for p2 gives, 

, (15) 

. (16) 

Thus, with internal irreversibilities, the exit pressure is smaller than if the flow was internally reversible. 
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Nitrogen (N2) enters a well-insulated diffuser operating at steady state at 0.656 bar (abs), 300 K with a 
velocity of 282 m/s.  The inlet area is 4.8*10-3 m2.  At the diffuser exit, the pressure is 0.9 bar (abs) and the 
velocity is 130 m/s.  The nitrogen behaves as an ideal gas with a specific heat ratio of 1.4.  Determine: 
a.  the exit temperature, in K,  
b. the exit area, in m2, and  
c. the rate of entropy production, in kJ/K per kg of flowing nitrogen. 
 
 
SOLUTION: 
 
 
 
 
 
 
Apply the 1st Law to a control volume surrounding the interior of the diffuser,  

, (1) 

where, 

  (assuming steady flow), (2) 

, (3) 

(changes in PE are assumed negligible compared to changes in the other terms, especially since 
we’re dealing with a gas; from conservation of mass, )   

 (the diffuser is well-insulated) (4) 

  (no other work acting on the control volume) (5) 
 

Substituting and simplifying, 
. (6) 

 
Assuming ideal gas behavior, 

(T1 = 300 K) = 8723 kJ/kmol   (Table A-23 in Moran et al., 8th ed.) 
=>    =>  h1 = 311.42 kJ/kg, (7) 

where the molecular weight of nitrogen gas (N2) is 28.01 kg/kmol has been used. 
 
Given V1 = 282 m/s, V2 = 130 m/s, and making use of Eqs. (7) and (6), 

h2 = 342.73 kJ/kg  =>   = 9600. kJ/kmol  =>  T2 = 330 K. (8) 
Interpolation in Table A-23 was used to determine this outlet temperature. 
 
Alternately, if a perfect gas model is assumed, we can write Eq. (6) as, 

, (9) 

where, 

, (10) 

=>  cp = 1.0389 kJ/(kg.K)  with k = 1.4,   = 8.314 kJ/(kmol.K),  and M = 28.01 kg/kmol  
 

=>  T2 = 330 K, which is the same result found previously 
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The exit area may be found by applying conservation of mass to the same control volume, 

, (11) 

Note that the process is assumed to be steady.  The density ratio may be found by making use of the ideal 
gas law, 

. (12) 

Substituting and simplifying, 

 . (13) 

Using the given data 
A1 = 4.8*10-3 m2, 
p1 = 0.656 bar (abs), 
p2 = 0.9 bar (abs), 
T2 = 330 K  (calculated for part (a)), 
T1 = 300 K, 
V1 = 282 m/s, 
V2 = 130 m/s, 
=>  A2 = 8.35*10-3 m2. 
 

The rate of entropy production may be found by applying the entropy equation to the same control volume, 

, (14) 

where, 

  (assuming steady flow), (15) 

, (16) 

  (assuming adiabatic operation), (17) 

=>    =>   (18) 

 
The change in entropy for an ideal gas is, 

, (19) 

where, 
 kJ/(kmol.K),  (Table A-23 in Moran et al., 8th ed.)

 kJ/(kmol.K),  (Table A-23 in Moran et al., 8th ed.) 

 8.314 kJ/(kmol.K), 
p2/p1 = (0.9 bar (abs))/(0.656 bar (abs)) = 1.372, 
M = 28.01 kg/kmol, 
=>  s2 – s1 = 5.28*10-3 kJ/(kg.K). 
 

Thus, making use of Eq. (18), 

 5.28*10-3 kJ/(kg.K) 
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If we assume the nitrogen behaves as an ideal gas, then we could find the change in entropy using, 

, (20) 

=> s2 – s1 = 5.15*10-3 kJ/(kg.K), which is within 2.5% of the previous result. 
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An inventor claims to have developed a device requiring no work input or heat transfer, yet able to produce 
steady state hot and cold air streams as shown in the figure.  Evaluate this claim assuming the ideal gas 
model for air and ignoring kinetic and potential energy effects. 
 
 
 
 
 
 
 
 
SOLUTION: 
 
Apply conservation of mass, the First Law, and the Second Law to the control volume shown below. 
 
 
 
 
 
 
 
 
 
Conservation of Mass, 

 (1) 

where, 

  (steady flow) 

 

Substitute and re-arrange, 
 

 (2) 
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First Law of Thermodynamics, 

 (3) 

where, 

  (steady flow 

 

  (no heat or work addition) 

Substitute and re-arrange, 
 

 (4) 

Substitute Eq. (2) into Eq. (4) and simplify, 

 

 (5) 

 
From thermodynamics tables for air at the given inlet and outlet temperatures, 

h1 = 293.2 kJ/kg  (T1 = 20 °C = 293 K) 
h2 = 333.3 kJ/kg  (T2 = 60 °C = 333 K) 
h3 = 273.1 kJ/kg  (T3 = 0 °C = 273 K) 
 

Hence,  

   and    (6) 

Note that the outgoing mass flow rates are both positive, consistent with the problem description. 
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 Entropy Equation, 
!
!" ∫ "#$%#$ + ∫ "(#(%&' ⋅ $*) = 	∫ ()̇!"#$

+#,#, + .̇,  (7) 
where, 

   (steady state) 

 

  ∫ ()̇!"#$
+#, = 0 (no heat added to the control volume) 

Substitute and re-arrange, 
1̇-"- + 1̇.". − 1̇/"/ = .̇, 
0̇%
0̇&
"- + 0̇'

0̇&
". − "/ = 1̇

0̇&
, 

31 − 0̇'
0̇&
5 "- + 0̇'

0̇&
". − "/ = 1̇

0̇&
, 

("- − "/) + 0̇'
0̇&
(". − "-) = 1̇

0̇&
. (8) 

 
Note that for an ideal gas, the specific entropy at a given temperature and pressure can be determined by, 

 (9) 

Substituting Eq. (9) into Eq. (8) gives, 
3"-2 − "/2 − 6 ln 3%3&5 +

0̇'
0̇&
3".2 − "-2 − 6 ln 3'3%5 =

1̇
0̇&

.  (10) 
 

From thermodynamics tables for air at the given conditions, 
s01 = 1.6783 kJ/(kg×K)  (T1 = 20 °C = 293 K) 
s02 = 1.8069 kJ/(kg×K)  (T2 = 60 °C = 333 K) 
s03 = 1.6073 kJ/(kg×K)  (T3 = 0 °C = 273 K) 

and from the given conditions, 
p1  = 3.0 bar 
p2  = 2.7 bar 
p3  = 2.7 bar 
 

Thus, Eq. (10) simplifies to, 
1̇
0̇&
= 0.0259 kJ/(kg.K). (11) 

Thus, the Second Law of Thermodynamics is satisfied. 
 
 
Since conservation of mass, the First Law, and the Second Law are all satisfied, the claim of the inventor is 
not unreasonable. 
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Two alternate systems are under consideration for bringing a stream of air from 17 °C to 52 °C at an 
essentially constant pressure of 1 bar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both systems operate at steady state.  All kinetic and potential energy effects can be ignored and no 
significant heat transfer with the surroundings occurs.  For each of the two systems, calculate the rate of 
entropy production in kJ/K per kg of air passing through the system. 
 
 
SOLUTION: 
 
First analyze METHOD 1.  
  
Apply the 2nd Law to the control volume shown below. 
 
 
 
 
 
 

!
!" ∫ "#$%#$ + ∫ "(#(%&' ⋅ $*)#( = ∫ )*̇!"#$	&'

,#( + -̇, (1) 
where, 

   (steady state) 

∫ "(#(%&' ⋅ $*)#( = /̇-.%("/0" − ".1)  
∫ )*̇!"#$	&'

,#( = 0  (since adiabatic) 
Substitute and simplify, 

"/0" − ".1 = 2̇
3̇(!)

 (2) 
where σ is the entropy produced per unit mass flow rate. 
 
From thermodynamics tables for air at the given temperatures (note that the air, treated as an ideal gas, is at 
the same pressure at the inlet and outlet so that:   s(TB, pB) - s(TA, pA) = s0(TB) – s0(TA)): 

sout,air = 1.7825 kJ/(kg×K)  (Tout = 52 °C = 325 K) 
sin,air = 1.6680 kJ/(kg×K)  (Tout = 17 °C = 290 K) 

The entropy generation is, 
2̇

3̇(!)
= 0.1145 kJ/(kg.K)  for Method 1 (3) 

Since the entropy production is positive, the process satisfies the Second Law. 
  

CV

0d s dV
dt

r =ò

Air temperature increases as a 
consequence of the stirring of a 
liquid surrounding the line carrying 
the air. 
 

METHOD 1 

Air temperature increases by passing it through one 
side of a counterflow heat exchanger.  On the other 
side, steam condenses at a pressure of 1 bar from 
saturated vapor to saturated liquid. 
 

METHOD 2 

17 °C 
1 bar 

52 °C 
1 bar 
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Now consider METHOD 2. 
 
Apply the 2nd Law to the control volume shown below. 
 
 
 
 
 
 
 
 
 

!
!" ∫ "#$%#$ + ∫ "(#(%&' ⋅ $*)#( = ∫ )*̇!"#$	&'

,#( + -̇ (4) 
where, 

  (steady state) 

 

∫ )*̇!"#$	&'
,#( = 0  (no heat transfer into or out of the control volume) 

Substitute and simplify, 
/̇456("/0" − ".1)456 + /̇-.%("/0" − ".1)-.% = -̇, 
3̇*+,
3̇(!)

("/0" − ".1)456 + /̇-.%("/0" − ".1)-.% = 2̇
3̇(!)

, (5) 
The specific entropies of the outgoing and incoming air were calculated previously.  The specific entropies 
of the saturated liquid and vapor water (both at 1 bar) are found from thermodynamics tables: 

sout,H20 = 1.3026 kJ/(kg×K)  (saturated liquid water at 1 bar) 
sin,H20 = 7.3594 kJ/(kg×K)  (saturated water vapor at 1 bar) 

 
Now apply the First Law to the same control volume to determine the mass flow rate ratio, 

 (6) 

where, 

   (steady state) 

 

  (adiabatic and no work) 

Substitute and simplify, 
 

 (7) 
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Using the given data, 
hout,air = 325.31 kJ/kg (Tout = 52 °C = 325 K) 
hin,air = 290.16 kJ/kg (Tout = 17 °C = 290 K) 
hout,H20 = 417.46 kJ/(kg×K)  (saturated liquid water at 1 bar) 
hin,H20 = 2675.5 kJ/(kg×K)  (saturated water vapor at 1 bar) 

Þ   (8) 

 
Substituting the previous result into Eq. (5) gives, 

2̇
3̇(!)

= 0.020 kJ/(kg.K)  (9) 
Since the entropy production is positive, the data are consistent with the Second Law.   Furthermore, the 
total entropy production per unit mass flow rate of air is 0.020 kJ/(kg×K). 
 
The given results indicate that METHOD 2 is a better approach, thermodynamically speaking, i.e., there is 
less irreversibility per unit mass flow rate of air, than METHOD 1. 
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