
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

3.7. Combining the First and Second Laws

Recall that for a system, the First Law of Thermodynamics, written on a per mass and di↵erential basis, is,

desys = �qinto sys + �won sys. (3.157)

If we consider a pure, simple, compressible substance (no kinetic or potential energies to consider and only
pdV work), then Eq. (3.157) may be written as,

du = �qinto � pdv. (3.158)

Note that the subscript “sys” has been dropped for convenience. Using the Second Law (Eq. (3.146)) to
substitute for the heat transfer term and noting that when we use Eq. (3.146), we’re assuming an internally
reversible process,

du = Tds� pdv =) Tds = du+ pdv , (3.159)

or, if written in terms of the enthalpy (dh = du+ pdv + vdp),

Tds = dh� vdp (3.160)

Note that pdv work is considered internally reversible work if done quasi-statically. The boxed equations are
known as the Tds equations and are useful in relating changes in entropy to other system properties.

Notes:

(1) Even though the Tds equations were derived making use of an internally reversible process, since
the equations only involve properties, the process used to go between the states is irrelevant. The
Td equations hold for reversible and irreversible process paths.

(2) Recall that during a change of phase, e.g., in the vapor dome, the pressure and temperature of a
substance remain constant =) dp = 0 and T = constant. Thus, Eq. (3.160) indicates that,

ds =
dh

T
=) �s =

�h

T
(during a phase change). (3.161)

(3) For an incompressible substance, dv = 0 and du = c(T )dT so that Eq. (3.159) becomes,

Tds = c(T )dT =) ds = c(T )
dT

T
=) s2 � s1 =

ˆ T2

T1

c(T )

T
dT (incompressible substance) . (3.162)

The change in specific entropy depends only on the (absolute) temperature. If we can further assume
that c is constant (a reasonable assumption in many instances when the change in temperature is
less than a few hundred Kelvin or degrees Rankine), then Eq. (3.162) becomes,

s(T2)� s(T1) = c ln

✓
T2

T1

◆
(incompressible substance, constant specific heat) . (3.163)

(4) For an ideal gas, pv = RT (vdp+pdv = RdT ), du = cv(T )dT , and dh = cp(T )dT , so that Eq. (3.159)
becomes,

Tds = cv(T )dT +RdT � vdp = cv(T )dT +RdT �RT
dp

p
= [cv(T ) +R]dT �RT

dp

p
. (3.164)

Recall that for an ideal gas that cp(T ) = cv(T ) +R so that the previous equation becomes,

ds = cp(T )
dT

T
�R

dp

p
. (3.165)

Integrating this equation gives,

s(T2, p2)� s(T1, p1) =

ˆ T2

T1

cp(T )
dT

T
�R ln

✓
p2
p1

◆
(ideal gas) . (3.166)
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The temperature of a 12 oz (0.354 l) can of soft drink is reduced from 20 °C to 5 °C by a 
refrigeration cycle.  The cycle receives energy by heat transfer from the soft drink and 
discharges energy by heat transfer at 20 °C to the surroundings.  There are no other heat 
transfers.  Determine the minimum theoretical work input required.  You may ignore the 
aluminum can in your calculations. 
 
 
SOLUTION: 
A schematic of the situation is shown below. 
 
 
 
 
 
 
 
Apply the 1st Law to a system consisting of the can and the refrigeration equipment, 

, (1) 

where, 
DEsys = DEcan + DEref. cycle, (2) 

where changes in kinetic and potential energies are ignored for the can so DEcan = DUcan.  Furthermore, 
since the refrigeration equipment operates over a cycle, DEref. cycle = 0.  Hence, Eq. (1) becomes, 

  Þ   . (3) 

 
The change in the can internal energy is, 

DUcan = mc(Tcan,f – Tcan,i), (4) 
where the soft drink is modeled as an incompressible substance since it’s a liquid.  The parameter m is the 
mass of the can and c is its specific heat.  
 
The heat transferred out of the system may be found by applying the 2nd Law, 

  Þ  , (5) 

where, 
DSsys = DScan + DSref. cycle.   (6) 

Since the refrigeration equipment operates on a cycle, DSref. cycle = 0.  The absolute temperature at the 
boundary of the system where the heat is transferred out of the system is TH and s is the entropy produced 
during the process due to irreversibilities. 
 
Substituting Eq. (5) into Eq. (3) and simplifying gives, 

. (7)  

 
Since we’re interested in the minimum amount of work required during the process, consider the case when 
s = 0 (an internally reversible process).  Recall that s > 0 when irreversibilities are present.  Since the soft 
drink is assumed to be an incompressible substance,  

. (8) 

  

ΔEsys =Qinto
sys

+Won
sys

ΔUcan = −QH +Won Won = ΔUcan +QH

ΔSsys =
δQinto

T1,b

2

∫ +σ = −QH

TH
+σ QH = THσ −THΔSsys

Won = ΔUcan +THσ −THΔSsys

ΔScan = mc ln
Tcan,f
Tcan,i

⎛

⎝⎜
⎞

⎠⎟

can ref. 
cycle QH QC 

Won 

surroundings 
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Substituting Eqs. (4) and (8) into Eq. (7) (with s = 0) gives, 

  , (9) 

. (10) 

 
Using the following parameters, 

m = (1000 kg/m3)(0.354 l)(10-3 m3/l) = 0.354 kg   (assume the density of liquid water) 
c = 4.2 kJ/(kg.K)  (assume the specific heat of liquid water) 
Tcan,f = 5 °C = 278 K 
Tcan,i = 20 °C = 293 K 
TH = 20 °C = 293 K 
Þ Win,min = 0.591 kJ 

 
If we assume the soft drink is a compressed liquid instead of being incompressible, then the change in 
entropy is, 

, (11) 

where sCL(T, p) ≈ sl(T).  Treating the soda as water and using Table A-2 in Moran et al., 8th ed., 
sl(Tsoda,f = 5 °C) = 0.0761 kJ/(kg.K), 
sl(Tsoda,i = 20 °C) = 0.2966 kJ/(kg.K), 
=>  DSsoda = -0.0781 kJ/K, 

which is identical to the result found using the incompressible substance model. 
 

 

Won,min = mc Tcan,f −Tcan,i( )−THmc ln Tcan,f
Tcan,i

⎛

⎝⎜
⎞

⎠⎟

Won,min = mc Tcan,f −Tcan,i( )−TH ln Tcan,f
Tcan,i

⎛
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ΔSsoda = mΔssoda ≈ m sl Tsoda,f( )− sl Tsoda,i( )⎡⎣ ⎤⎦
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