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Figure 3.33. Schematic used to prove the first and second corollaries to the Second Law.

there is no net energy transfer to/from it since QH is removed by the irreversible system, but then replaced
by the reversible one. The energy received by the combined system from the cold reservoir is QC,R�QC,I > 0
and the net work done by the combined system is Wby,I �Wby,R > 0. This combined system is shown in the
right-hand schematic of Figure 3.33. Since the combined system operates over a cycle and interacts with a
single thermal reservoir, from the Kelvin-Plank Statement of the Second Law (Eq. (3.103)),

Wby,I �Wby,R < 0 =) Wby,I < Wby,R. (3.113)

Note that the inequality has been used since the combined system includes irreversibilities. Since the thermal
e�ciency is given by,

⌘ =
Wby

QH
, (3.114)

and QH is the same for the irreversible and reversible systems, we conclude that,

⌘R > ⌘I . (3.115)

Thus, we have proven the first corollary to the Second Law.

The second corollary can be proven by replacing the irreversible system in Figure 3.33 with a reversible one
so that there are two reversible systems (call these “R1” and “R2”). Following the same arguments as before,
we will arrive at the following statement using the Kelvin-Plank Statement of the Second Law,

Wby,R2 �Wby,R1 = 0 =) Wby,R2 = Wby,R1. (3.116)

Here, the equals sign is used since the combined system is reversible. Since the works and heat transfers are
the same, the e�ciencies of the two reversible systems must be identical.

Proofs for the third and fourth corollaries are not provided here, but follow similar arguments.

3.6.5. Kelvin Absolute Temperature Scale

Note that from the Second Law Corollaries, the reversible cycle performance measures depend solely on the
interaction with the thermal reservoirs, namely (QC/QH) in Eqs. (3.104) - (3.106) since all reversible cycle
e�ciencies are identical. Since it is the temperature di↵erence between the reservoirs that drives this heat
transfer, we can conclude that,
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QH
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rev. cycle

= fcn

✓
TC

TH

◆
, (3.117)

where TC and TH are the temperatures of the cold and hot reservoirs, respectively. Note that since the left
hand side of the equation is dimensionless, the right hand side must also be dimensionless. The function
fcn is determined by how we define temperature. In the Kelvin absolute temperature scale, we define the
temperatures such that the function is a simple linear one, i.e.,
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=
TC

TH
. (3.118)
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By definition, the ratio of temperatures on the Kelvin scale is equal to the ratio of the heat fluxes. Equa-
tion (3.118) only provides a ratio of temperatures; it doesn’t actually set a value for the temperature. To
complete the thermodynamic scale, we arbitrarily set the value of T on the Kelvin scale at the triple point
of water to be,

Ttriple pt of H2O = 273.16K. (3.119)

Notes:

(1) Since the performance of a reversible cycle is independent of the details of the cycle, e.g., work-
ing fluid, cycle components, etc., it also means that (QC/QH)rev,cycle and thus TC/TH are also
independent of the details of the cycle. This means that the Kelvin absolute temperature scale is
independent of any substance or cycle details.

(2) Since QC > 0 (to satisfy the Kelvin-Planck statement of the Second Law), it also means that
TC > 0. Thus, the minimum temperature limit on the Kelvin scale is zero Kelvin, which can never
be reached as stipulated by the Second Law.

(3) We can substitute Eq. (3.118) into Eqs. (3.104) - (3.106) to determine reversible, i.e., ideal, cycle
performance measures,
(a) Power cycle reversible thermal e�ciency,

⌘rev = 1� TC

TH
. (3.120)

(b) Refrigeration cycle reversible coe�cient of performance,

COPref,rev =
TC

TH � TC
. (3.121)

(c) Heat pump cycle reversible coe�cient of performance,

COPHP,rev =
TH

TH � TC
. (3.122)

Interestingly, the maximum performance of these cycles is independent of the details of the cycle
(design, working materials, etc.). The only factors that matter are the (absolute) temperatures of
the thermal reservoirs.
For a power cycle, the maximum e�ciency increases as TH increases or TC decreases. For example,
if a combustion process is used to supply heat to the system, the hotter the combustion gases (TH),
the more e�cient the reversible cycle. In most practical power cycles, the cycle discharges heat
to the environment so there is often less control over TC . Similar arguments may be made for
refrigeration and heat pump cycles.

(4) We can still calculate the e�ciency and COP s of any cycle, reversible or irreversible, using Eqs. (3.104)
- (3.106). However, for a reversible cycle, we can also make use of Eqs. (3.120) - (3.122).
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An internally reversible power cycle with a thermal efficiency of 40% receives 50 kJ of energy by heat 
transfer from a hot reservoir at 600 K and rejects energy by heat transfer to a cold reservoir at a temperature 
TC.  Determine the energy rejected and the temperature TC. 
 
 
SOLUTION: 
 
We can determine the heat transfer to the cold reservoir using the 
power cycle thermal efficiency in terms of the heat transfers,  

. (1) 

Using the given data, 
h = 0.40, 
QH,cycle =  50 kJ,  
Þ  QC,cycle = 30 kJ.  
 

The temperature of the reservoir can be found by noting that for a reversible cycle, 

. (2) 

Using the parameters given above in addition to TH = 600 K, 
TC = 360 K. 

η = 1−
QC ,cycle

QH ,cycle

⇒QC ,cycle = 1−η( )QH ,cycle

QH

QC rev,
cycle

= TH
TC

⇒TC = TH
QC

QH rev,
cycle

hot body 

cold body 

QC,cycle 

QH,cycle 

Wcycle 

Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics

C. Wassgren 259 2021-12-15


