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3.6.4. Performance Measures for Cycles

Recall that the power cycle thermal e�ciency is given by,

⌘ :=
Wby sys

QH
=

QH �QC

QH
= 1� QC

QH
. (3.104)

The refrigeration cycle coe�cient of performance is,

COPref :=
QC

Won sys
=

QC

QH �QC
=

1

QH/QC � 1
, (3.105)

and the heat pump cycle coe�cient of performance is,

COPHP :=
QH

Won sys
=

QH

QH �QC
=

1

1�QC/QH
. (3.106)

Notes:

• The subscript “cycle” has been removed in the previous equations for convenience; however, the
evaluations for work and heat are still over a cycle.

• From the Kelvin-Planck statement of the Second Law of Thermodynamics, in the power cycle, we
cannot have QC = 0, which implies that ⌘ < 1.

• From the Clausius statement of the Second Law, in the refrigeration and heat pump cycles, we
cannot have Won sys = 0, implying that COPref and COPHP must remain finite.

Corollaries to the Second Law of Thermodynamics

It can be shown (refer to the proof at the end of this section) that the following corollaries to the Second
Law are also true.

(1) The thermal e�ciency of an irreversible power cycle will always be less than the thermal e�ciency of
a reversible power cycle when the two power cycles operate between the same two thermal reservoirs,
i.e.,

⌘irreversible < ⌘reversible (same thermal reservoirs). (3.107)

(2) All reversible power cycles operating between the same two thermal reservoirs have the same thermal
e�ciency, i.e.,

⌘reversible,1 = ⌘reversible,2 (same thermal reservoirs). (3.108)

(3) The coe�cient of performance for a reversible refrigeration cycle (or heat pump cycle) will be larger
than the coe�cient of performance or an irreversible refrigeration cycle (or heat pump cycle) when
operating between the same two thermal reservoirs, i.e.,

COPirreversible < COPreversible (same thermal reservoirs). (3.109)

(4) All reversible refrigeration (or heat pump) cycles operating between the same two reservoirs will
have the same coe�cient of performance, i.e.,

COPreversible,1 = COPreversible,2 (same thermal reservoirs). (3.110)

The proof for the first corollary is presented now. Consider the situation shown in the left-hand schematic
of Figure 3.33. A reversible and irreversible system receive the same energy QH from a hot reservoir. The
irreversible system produces work Wby,I and discharges energy QC,I into a cold reservoir while the reversible
system produces work Wby,R and discharges energy QC,R into the same cold reservoir. From the First Law
applied separately to the irreversible and reversible systems and assuming both operate over a cycle,

0 = (QH �QC,I)�Wby,I =) Wby,I = QH �QC,I, (3.111)

0 = (QH �QC,R)�Wby,R =) Wby,R = QH �QC,R, (3.112)

where the change in the total energy of each of the two systems is zero since both are operating over a cycle.
Choose the reversible system such that QC,R > QC,I and, thus, Wby,R < Wby,I. Now switch the direction
of the reversible system (indicated by the dashed arrows in the figure) and consider the combined system
indicated by the dashed, red line in the figure. Note that this combined system includes the hot reservoir since
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Figure 3.33. Schematic used to prove the first and second corollaries to the Second Law.

there is no net energy transfer to/from it since QH is removed by the irreversible system, but then replaced
by the reversible one. The energy received by the combined system from the cold reservoir is QC,R�QC,I > 0
and the net work done by the combined system is Wby,I �Wby,R > 0. This combined system is shown in the
right-hand schematic of Figure 3.33. Since the combined system operates over a cycle and interacts with a
single thermal reservoir, from the Kelvin-Plank Statement of the Second Law (Eq. (3.103)),

Wby,I �Wby,R < 0 =) Wby,I < Wby,R. (3.113)

Note that the inequality has been used since the combined system includes irreversibilities. Since the thermal
e�ciency is given by,

⌘ =
Wby

QH
, (3.114)

and QH is the same for the irreversible and reversible systems, we conclude that,

⌘R > ⌘I . (3.115)

Thus, we have proven the first corollary to the Second Law.

The second corollary can be proven by replacing the irreversible system in Figure 3.33 with a reversible one
so that there are two reversible systems (call these “R1” and “R2”). Following the same arguments as before,
we will arrive at the following statement using the Kelvin-Plank Statement of the Second Law,

Wby,R2 �Wby,R1 = 0 =) Wby,R2 = Wby,R1. (3.116)

Here, the equals sign is used since the combined system is reversible. Since the works and heat transfers are
the same, the e�ciencies of the two reversible systems must be identical.

Proofs for the third and fourth corollaries are not provided here, but follow similar arguments.

3.6.5. Kelvin Absolute Temperature Scale

Note that from the Second Law Corollaries, the reversible cycle performance measures depend solely on the
interaction with the thermal reservoirs, namely (QC/QH) in Eqs. (3.104) - (3.106) since all reversible cycle
e�ciencies are identical. Since it is the temperature di↵erence between the reservoirs that drives this heat
transfer, we can conclude that,

QC

QH

����
rev. cycle

= fcn

✓
TC

TH

◆
, (3.117)

where TC and TH are the temperatures of the cold and hot reservoirs, respectively. Note that since the left
hand side of the equation is dimensionless, the right hand side must also be dimensionless. The function
fcn is determined by how we define temperature. In the Kelvin absolute temperature scale, we define the
temperatures such that the function is a simple linear one, i.e.,

QC

QH

����
rev. cycle

=
TC

TH
. (3.118)
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