

Specific Volume, Pressure, Temperature

Density and Specific Volume

$[\rho]=\mathrm{M} / \mathrm{L}^{3} \quad$ units: $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$, slugs $/ \mathrm{ft}^{3}$
$[v]=\mathrm{L}^{3} / \mathrm{M} \quad$ units: $\mathrm{m}^{3} / \mathrm{kg}, \mathrm{ft}^{3} / \mathrm{lbm}_{\mathrm{m}}, \mathrm{ft}^{3} / \mathrm{slug}$
$v=1 / \rho$
$\bar{v}=v M \quad$ units: $\mathrm{m}^{3} / \mathrm{kmol} \quad(M$ is molecular weight with units $\mathrm{kg} / \mathrm{kmol}$ or $\mathrm{g} / \mathrm{mol})$

Pressure

$[p]=\mathrm{F} / \mathrm{L}^{2} \quad$ units: $\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}(\mathrm{psi}), \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}(\mathrm{psf})$, bar $\left(=10^{5} \mathrm{~Pa}\right), \mathrm{inHg}, \mathrm{mmHg}$

" d " means very small, e.g., $d A$ is a very small area and $d \mathbf{F}$ is a very small force. We use small quantities since over a large area, the pressure could vary from location to location. However, over a very small area the pressure is essentially constant. To get the total force over a large area, we can sum up all the small forces, i.e., integrate over the area: $\boldsymbol{F}_{N}=\int_{A} d \boldsymbol{F}_{N}=\int_{A} p d A(-\widehat{\boldsymbol{n}})$.
absolute pressure: pressure referenced to a vacuum, e.g., $p_{\text {vacuum }}=0$ (abs) gage pressure: pressure referenced to the atmosphere, e.g., $p_{\mathrm{atm}}=0$ (gage)
$p_{\text {gage }}=p_{\text {abs }}-p_{\text {atm,abs }}$

Always use absolute pressure when using the ideal gas law and any equation derived using the ideal gas law.

$p_{\text {atm }}=101 \mathrm{kPa}(\mathrm{abs})=14.7 \mathrm{psia}=0 \mathrm{psig}$

Temperature

Temperature is a measure of the random kinetic energy of the molecules comprising a substance.
$[\theta]=\theta \quad$ units: ${ }^{\circ} \mathrm{C}, \mathrm{K},{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{R}$

Always use absolute temperature when using the ideal gas law and any equation derived using the ideal gas law.

Some helpful conversions (the " θ " refers to temperature):

$$
\begin{aligned}
& \theta(\mathrm{K})=1.8 \theta\left({ }^{\circ} \mathrm{R}\right)(1.8=9 / 5) \\
& \theta\left({ }^{\circ} \mathrm{C}\right)=\left[\theta\left({ }^{\circ} \mathrm{F}\right)-32\right] / 1.8 \\
& \theta\left({ }^{\circ} \mathrm{C}\right)=\theta(\mathrm{K})-273.15 \\
& \theta\left({ }^{\circ} \mathrm{F}\right)=\theta\left({ }^{\circ} \mathrm{R}\right)-459.67
\end{aligned}
$$

Another convenient conversion formula for casual usage (not scientific usage):
$10^{\circ} \mathrm{C}=50^{\circ} \mathrm{F}$ (for every $5^{\circ} \mathrm{C}$ increase, add $9^{\circ} \mathrm{F}$)
Another very approximate approach,
$\theta\left({ }^{\circ} \mathrm{F}\right) \approx 2 * \theta\left({ }^{\circ} \mathrm{C}\right)+30$ (will give a few degrees error over the range of typical weather temps)
$\theta\left({ }^{\circ} \mathrm{C}\right) \approx\left(\theta\left({ }^{\circ} \mathrm{F}\right)-30\right) / 2$

