

Specific Volume, Pressure, Temperature

Density and Specific Volume

$[\rho] = M/L^3$	units: kg/m ³ , lb _m /ft ³ , slugs/ft ³
$[v] = L^3/M$	units: m ³ /kg, ft ³ /lb _m , ft ³ /slug
$v = 1/\rho$	
$\bar{v} = vM$	units: $m^3/kmol$ (<i>M</i> is molecular weight with units kg/kmol or g/mol)

Pressure

"d" means very small, e.g., dA is a very small area and $d\mathbf{F}$ is a very small force. We use small quantities since over a large area, the pressure could vary from location to location. However, over a very small area the pressure is essentially constant. To get the total force over a large area, we can sum up all the small forces, i.e., integrate over the area: $\mathbf{F}_N = \int_A d\mathbf{F}_N = \int_A pdA(-\hat{\mathbf{n}})$.

<u>absolute pressure</u>: pressure referenced to a vacuum, e.g., $p_{vacuum} = 0$ (abs) <u>gage pressure</u>: pressure referenced to the atmosphere, e.g., $p_{atm} = 0$ (gage)

$$p_{\text{gage}} = p_{\text{abs}} - p_{\text{atm,abs}}$$

 \sum

θ

Always use absolute pressure when using the ideal gas law and any equation derived using the ideal p_{gas} law. 1 sin p dy 1 dx dy 1 x

 $p_{\text{atm}} = 101 \text{ kPa} (\text{abs}) = 14.7 \text{ psia} = 0 \text{ psig}$

θ

θ

 $p = \rho RT$

Temperature

Temperature is a measure of the random kinetic energy of the molecules comprising a substance.

 $[\theta] = \theta$ units: °C, K, °F, °R

Always use absolute temperature when using the ideal gas law and any equation derived using the ideal gas law.

Some helpful conversions (the " θ " refers to temperature):

$$\begin{split} \theta(K) &= 1.8 \; \theta(^{\circ}R) \; (1.8 = 9/5) \\ \theta(^{\circ}C) &= [\theta(^{\circ}F)-32]/1.8 \\ \theta(^{\circ}C) &= \theta(K) - 273.15 \\ \theta(^{\circ}F) &= \theta(^{\circ}R) - 459.67 \end{split}$$

Another convenient conversion formula for casual usage (not scientific usage):

 $10 \text{ }^{\circ}\text{C} = 50 \text{ }^{\circ}\text{F}$ (for every 5 $^{\circ}\text{C}$ increase, add 9 $^{\circ}\text{F}$)

Another very approximate approach,

 $\theta(^{\circ}F) \approx 2*\theta(^{\circ}C) + 30$ (will give a few degrees error over the range of typical weather temps) $\theta(^{\circ}C) \approx (\theta(^{\circ}F) - 30)/2$