A piston, with a mass of $m=100 \mathrm{~kg}$ and cross-sectional area of $A=10 \mathrm{~cm}^{2}$, is located within a cylinder as shown in the figure. The pressure on the top surface of the piston is a uniform $p_{t}=200 \mathrm{kPa}$ (abs). The pressure on the bottom of the piston is a uniform $p_{b}=1$ bar (abs). If a force is applied to the piston to move it slowly upwards, i.e., in a quasi-equilibrium process, a distance of $L=1 \mathrm{~cm}$, determine the work done on the piston by the force, in kJ. Show all of your unit conversions.

SOLUTION:

First, determine the force by performing a vertical force balance on the piston, keeping in mind that the process is in quasi-equilibrium so that there is no acceleration of the piston,

$$
\begin{equation*}
\sum F=0=F+p_{b} A-m g-p_{t} A \Rightarrow F=m g+\left(p_{t}-p_{b}\right) A \tag{1}
\end{equation*}
$$

The work due to the force is,

$$
\begin{align*}
& W=\int_{s=0}^{s=L} \boldsymbol{F} \cdot d \boldsymbol{s}=\int_{0}^{L}\left[m g+\left(p_{t}-p_{b}\right) A\right] d s=\left[m g+\left(p_{t}-p_{b}\right) A\right] L \tag{2}\\
& W=m g L+\left(p_{t}-p_{h}\right) A L \tag{3}
\end{align*}
$$

Note that the first term on the right-hand side is the change in potential energy while the second term is the pressure difference multiplied by the volume traced out by the piston (=AL).

Using the given values, evaluate the terms in Eq. (3). Start with the $m g L$ term,

$$
\begin{equation*}
m g L=\underbrace{(100 \mathrm{~kg})}_{=m} \underbrace{\left.9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}_{=g} \underbrace{(1 \mathrm{~cm})}_{=L}\left(\frac{1 \mathrm{~N}}{1 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(\frac{1 \mathrm{~J}}{1 \mathrm{~N} \cdot \mathrm{~m}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=9.81 * 10^{-3} \mathrm{~kJ} . \tag{4}
\end{equation*}
$$

Now evaluate the $\left(p_{t}-p_{b}\right) A L$ term,

$$
\begin{equation*}
\left(p_{t}-p_{b}\right) A L=[\underbrace{(200 \mathrm{kPa}}_{=p_{t}}\left(\frac{1000 \mathrm{~Pa}}{1 \mathrm{kPa}}\right)-\underbrace{(1 \mathrm{bar})}_{=p_{b}}\left(\frac{10^{5} \mathrm{~Pa}}{1 \mathrm{bar}}\right)] \underbrace{\left(10 \mathrm{~cm}^{2}\right)}_{=A} \underbrace{(1 \mathrm{~cm})}_{=L}\left(\frac{1 \mathrm{~N} / \mathrm{m}^{2}}{1 \mathrm{~Pa}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3}\left(\frac{1 \mathrm{~J}}{1 \mathrm{~N} \cdot \mathrm{~m}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=1 * 10^{-3} \mathrm{~kJ} . \tag{5}
\end{equation*}
$$

Combining the numerical values in Eqs. (4) and (5),
$W=1.08 * 10^{-2} \mathrm{k}$.

