A vertical piston-cylinder assembly with a piston of mass 25 kg and having a face area of $0.005 \mathrm{~m}^{2}$ contains air. The mass of air is 2.5 g and initially the air occupies a volume of 2.5 L . The atmosphere exerts a pressure of 100 kPa (abs) on the top of the piston. The volume of the air slowly decreases to $0.001 \mathrm{~m}^{3}$ as energy with a magnitude of 1 kJ is slowly removed by heat transfer. Neglecting friction between the piston and the cylinder wall, determine the change in specific internal energy of the air.

SOLUTION:

Apply the First Law of Thermodynamics to a system consisting of the air inside the piston (indicated by the red, dashed line in the figure),

$$
\begin{equation*}
\Delta E_{s y s}=Q_{\text {into sys }}+W_{o n s y s} \tag{1}
\end{equation*}
$$

where,

$$
\begin{align*}
& \Delta E_{\text {sys }}=\Delta U=m_{g a s} \Delta u\left(\Delta K E \text { and } \Delta P E \text { are negligible, } m_{\text {gas }} \text { remains constant }\right), \tag{2}\\
& Q_{\text {into sys }}=-1 k J \text { (given), } \tag{3}\\
& W_{\text {on sys }}=\int_{1}^{2} \boldsymbol{F} \cdot d \boldsymbol{s}=\int_{1}^{2}\left(-M g \widehat{\boldsymbol{k}}-p_{a t m} A \widehat{\boldsymbol{k}}\right) \cdot d z \widehat{\boldsymbol{k}}=-\left(M g+p_{a t m} A\right) \int_{z_{1}}^{z_{2}} d z=-M\left(g \Delta z+p_{\text {atm }} A \Delta z\right), \tag{4}\\
& W_{\text {on sys }}=-\left(M g \Delta z+p_{a t m} \Delta V\right) . \tag{5}
\end{align*}
$$

Note that,

$$
\begin{equation*}
\Delta z=\frac{\Delta V}{A} \tag{6}
\end{equation*}
$$

so that,

$$
\begin{equation*}
W_{o n s y s}=-\left(\frac{M g}{A}+p_{a t m}\right) \Delta V . \tag{7}
\end{equation*}
$$

Substitute and solve for Δu,

$$
\begin{align*}
& m_{\text {gas }} \Delta u=Q_{\text {into }}-\left(\frac{M g}{A}+p_{\text {atm }}\right) \Delta V, \tag{8}\\
& \Delta u=\frac{Q_{\text {into }}-\left(\frac{M g}{A}+p_{\text {atm }}\right) \Delta V}{m_{\text {gas }}} \tag{9}
\end{align*}
$$

Using the given values,

```
\(Q_{\text {into }}=-1 \mathrm{~kJ}\),
\(M=25 \mathrm{~kg}\) (mass of piston),
    \(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\),
    \(A=0.005 \mathrm{~m}^{2}\),
    \(p_{\text {atm }}=100 \mathrm{kPa}(\mathrm{abs})\),
    \(\Delta V=V_{2}-V_{1}=0.001 \mathrm{~m}^{3}-2.5 * 10^{-3} \mathrm{~m}^{3}=-1.5 * 10^{-3} \mathrm{~m}^{3}\),
    \(m_{g a s}=2.5 * 10^{-3} \mathrm{~kg}\),
\(\Delta u=-311 \mathrm{~kJ} / \mathrm{kg}\).
```

gives,

Note that the work on the system is,
$W_{\text {on sys }}=224 \mathrm{~J}$.
An alternate approach would be to calculate the work done by the system and use the following form of the First
Law,

$$
\begin{equation*}
\Delta E_{\text {sys }}=Q_{\text {into sys }}-W_{\text {by sys }}, \tag{10}
\end{equation*}
$$

where,

$$
\begin{equation*}
W_{\text {by sys }}=\int_{V_{1}}^{V_{2}} p_{\text {air }} d V=p_{a i r} \int_{V_{1}}^{V_{2}} d V=p_{a i r}\left(V_{2}-V_{1}\right) \quad\left(\text { since } p_{\text {air }}=\text { constant }\right) \tag{11}
\end{equation*}
$$

Note that the gas pressure is found by balancing forces on the piston,

$$
\begin{align*}
& p_{\text {air }} A=p_{a t m} A+M g, \tag{12}\\
& p_{\text {air }}=p_{a t m}+\frac{M g}{A} \tag{13}
\end{align*}
$$

Using the given values,
$p_{\text {air }}=149 \mathrm{kPa}(\mathrm{abs})$,
$W_{\text {by sys }}=-224 \mathrm{~J}$, which is the equal but opposite in sign to $W_{\text {on sys }}$, as expected.

