a. What is the minimum amount of work that must be done by the air in a balloon when it is inflated from a volume of 0.100 L to 1.85 L against a constant external pressure of 1.00 atm (abs)?
b. Now imagine that the balloon is inflated while in a sealed box, which has a volume of $V_{b o x}=$ $0.010 \mathrm{~m}^{3}$. How much work would be required to inflate the balloon between the same two volumes if the external absolute pressure varies as,

SOLUTION:

The system consists of the air in the balloon.
The work done by the system during the expansion process in part (a) is,

$$
\begin{align*}
& W_{\text {by sys }}=\int_{V_{1}}^{V_{2}} p d V, \tag{1}\\
& W_{\text {by sys }}=p\left(V_{2}-V_{1}\right) . \quad \text { (Note that } p=\text { constant.) } \tag{2}
\end{align*}
$$

Here, $p=1.00 \mathrm{~atm}(\mathrm{abs})=101 \mathrm{kPa}(\mathrm{abs}), V_{1}=0.100 \mathrm{~L}=0.100^{*} 10^{-3} \mathrm{~m}^{3}$, and $V_{2}=1.85 \mathrm{~L}=1.85^{*} 10^{-3} \mathrm{~m}^{3}$. Thus, $W_{\text {by sys }}=\left(101 * 10^{3} \mathrm{~Pa}\right)\left(1.85 * 10^{-3} \mathrm{~m}^{3}-0.100 * 10^{3} \mathrm{~m}^{3}\right)$,
$W_{b y s y s}=177 \mathrm{~J}$.

If the external pressure changes with volume (part (b)), then,

$$
\begin{align*}
& W_{b y s y s}=\int_{V_{1}}^{V_{2}} p d V, \tag{5}\\
& W_{b y} s y s \tag{6}\\
& =\int_{V_{1}}^{V_{2}} \frac{p_{0}\left(V_{\text {box }}-V_{0}\right)}{V_{\text {box }}-V} d V=-p_{0}\left(V_{\text {box }}-V_{0}\right) \ln \left(\frac{V_{\text {box }}-V_{2}}{V_{\text {box }}-V_{1}}\right), \tag{7}\\
& W_{\text {by sys }}=-\left(101 * 10^{3} \mathrm{~Pa}\right)\left(0.010 \mathrm{~m}^{3}-0.100 * 10^{-3} \mathrm{~m}^{3}\right) \ln \left(\frac{0.010 \mathrm{~m}^{3}-1.85 * 10^{-3} \mathrm{~m}^{3}}{0.010 \mathrm{~m}^{3}-0.100 * 10^{-3} \mathrm{~m}^{3}}\right), \tag{8}\\
& W_{\text {bysys }}=194 \mathrm{~J} .
\end{align*}
$$

The work is larger for part (b) because the external pressure increases as the balloon expands. Note that as $V_{b o x}$ increases in size, then the work for part (b) approaches the same value as that for part (a).

