A fluid contained within a piston-cylinder device is designed to lift a load of $m=100 \mathrm{~kg}$. How high can this load be lifted if 1 A of current passes through the fluid over a 12 V potential for two minutes and a shaft is rotated at 100 rpm with a torque of 1 N.m for one minute? Assume that all of the work that goes into the fluid due to the electricity and shaft goes into raising the load.

SOLUTION:

The system consists of the fluid. The work done on this system by the electricity is,

$$
\begin{equation*}
W_{\text {elec }, o n ~ s y s}=V I \Delta t=(1 A)(12 V)(120 s)=1440 J \tag{1}
\end{equation*}
$$

The work done on the system by the rotating shaft is,

$$
\begin{equation*}
W_{\text {shaft }, \text { on sys }}=\omega T \Delta t=\left(100 \frac{\mathrm{rot}}{\mathrm{~min}} \cdot \frac{2 \pi \mathrm{rad} \cdot \frac{\min }{\mathrm{rot}} \cdot \frac{6}{60 \mathrm{~s}}}{}\right)(1 \mathrm{~N} . \mathrm{m})(60 \mathrm{~s})=628 \mathrm{~J} . \tag{2}
\end{equation*}
$$

To lift the mass m a height Δh, the work done by the system must be,

$$
\begin{equation*}
W_{b y s y s}=m g \Delta h=(100 \mathrm{~kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(\Delta h)=\left(981 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right) \Delta h . \tag{3}
\end{equation*}
$$

Since we're told that all of the work by the electricity and rotating shaft goes into lifting the mass,
$W_{\text {by sys }}=W_{\text {elec,on sys }}+W_{\text {shaft }, \text { on sys }}$,
$\left(981 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right) \Delta h=1440 \mathrm{~J}+628 \mathrm{~J}$,
$\Delta h=2.11 \mathrm{~m}$.

