Water, with a specific volume of $0.001 \mathrm{~m}^{3} / \mathrm{kg}$, flows from an elevated reservoir through a turbine operating at steady state. The inlet and exit diameters are equal. Determine the maximum power output associated with a mass flow rate of $950 \mathrm{~kg} / \mathrm{s}$.

$$
\begin{aligned}
& H_{1}=160 \mathrm{~m} \\
& H_{2}=10 \mathrm{~m} \\
& p_{1}=1.5 \mathrm{bar}(\mathrm{abs}) \\
& p_{2}=1.0 \mathrm{bar}(\text { abs }) \\
& D_{1}=D_{2} \text { (pipe diameters) }
\end{aligned}
$$

SOLUTION:

The maximum power from the turbine will correspond to when the flow through the system is internally reversible.
If we assume that the water is incompressible ($v=$ constant), then from a combination of the $1^{\text {st }}$ Law and the Entropy Equation applied to a CV that surrounds the entire pipe system,

$$
\begin{equation*}
\frac{\dot{W}_{\text {out }, \text { max }}}{\dot{m}}=\frac{\dot{W}_{\text {out, int.rev. }}}{\dot{m}}=v\left(p_{1}-p_{2}\right)+\frac{1}{2}\left(V_{1}^{2}-V_{2}^{2}\right)+g\left(z_{1}-z_{2}\right) . \tag{1}
\end{equation*}
$$

Since the water is incompressible and the inlet and exit pipe diameters are identical, from COM we find $V_{2}=V_{1}$.
Equation (1) now becomes,

$$
\begin{equation*}
\frac{\dot{W}_{\text {out }, \text { max }}}{\dot{m}}=v\left(p_{1}-p_{2}\right)+g\left(z_{1}-z_{2}\right) . \tag{2}
\end{equation*}
$$

Using the given values,

$$
\begin{aligned}
& v=0.001 \mathrm{~m}^{3} / \mathrm{kg}, \\
& p_{1}=1.5 \mathrm{bar}(\mathrm{abs})=150,000 \mathrm{~Pa}(\mathrm{abs}), \\
& p_{2}=1 \mathrm{bar}(\mathrm{abs})=100,000 \mathrm{~Pa}(\mathrm{abs}), \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \\
& z_{1}=160 \mathrm{~m}, \\
& z_{2}=-10 \mathrm{~m}, \\
& \dot{m}=950 \mathrm{~kg} / \mathrm{s}, \\
& \Rightarrow \dot{W}_{\text {out }, \text { max }}=1.63 \mathrm{MW} .
\end{aligned}
$$

This is the maximum possible power output. The actual power output will be less than this value.

