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Air enters a one inlet/one outlet control volume operating at steady state.  The inlet pressure and temperature are 100 
psia and 900 ºR, respectively.  Flow through the control volume is adiabatic and the outlet pressure is 25 psia.  
Kinetic and potentially energy changes across the control volume are negligible.  Determine the rate of entropy 
production per unit mass flow rate for: 
a. if the control volume encloses a turbine having an isentropic turbine efficiency of 89.1%, and 
b. if the control volume encloses a throttling valve.  
 
 
 
 
 
 
 
  

1: 
100 psia 
900 ºR 

2: 
25 psia 
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SOLUTION: 
 
Apply the Entropy Equation to the control volume, 

!"!"
!#

= ∑ �̇�𝑠$% −∑ �̇�𝑠&'# + ∫ ()̇#$
+, + �̇�, (1) 

where, 
!"!"
!#

= 0    (assuming steady state operation), (2) 
∑ �̇�𝑠$% − ∑ �̇�𝑠&'# = �̇�(𝑠- − 𝑠.), (3) 

(from COM, �̇�. = �̇�- = �̇�) 
∫ ()̇#$

+, = 0     (assuming adiabatic operation), (4) 
�̇� =?, (5) 

Substitute and re-arrange to solve for the rate of entropy generation per unit mass flow rate, 
0 = �̇�(𝑠- − 𝑠.) + �̇�, (6) 
/̇
0̇
= 𝑠. − 𝑠-. (7) 

 
Assuming air is an ideal gas, 

𝑠. − 𝑠- = 𝑠1(𝑇.) − 𝑠1(𝑇-) − 𝑅𝑙𝑛 2
2%
2&
3, (8) 

Note that the inlet pressure and temperature are given, as well as the outlet pressure.  To determine the outlet 
temperature for the turbine, first make use of the isentropic turbine efficiency to find the outlet specific enthalpy, 

𝜂#'3,,$56% =
7&87%
7&87%'

  =>  𝜂#'3,,$56%(ℎ- − ℎ.5) = ℎ- − ℎ.  =>  ℎ. = ℎ- − 𝜂#'3,,$56%(ℎ- − ℎ.5). (9) 
If we can find h2, then we can determine the corresponding T2 from the Ideal Gas Table for air. 
 
The value for h1 may be found from the Ideal Gas Table for air, 

h1 = h(T1 = 900 ºR) = 216.26 Btu/lbm. 
 

To find h2s, first find T2s using Eq. (8) and noting that s2s = s1, 
0 = 𝑠1(𝑇.5) − 𝑠1(𝑇-) − 𝑅𝑙𝑛 2

2%'
2&
3  =>  𝑠1(𝑇.5) = 𝑠1(𝑇-) + 𝑅𝑙𝑛 2

2%'
2&
3   (10) 

Using the given data, 
p1 = 100 psia, 
p2s = p2 = 25 psia, 
R = 0.06856 Btu/(lbm.ºR), 
s0(T1 = 900 ºR) = 0.72438 Btu/(lbm.ºR)   (from the Ideal Gas Table), 
ð s0(T2s) = 0.62934 Btu/(lbm.ºR)  =>  T2s = 608.29 ºR =>  h2s = 145.46 Btu/lbm  (from the Ideal Gas Table)   
ð h2 = 153.18 Btu/lbm  =>  T2 = 640.37 ºR  => s0(T2) = 0.641729 Btu/(lbm.ºR). 

Finally, substituting into Eq. (8) and Eq. (7), 
/̇
0̇
= 𝑠. − 𝑠- = 0.012393 Btu/(lbm.ºR). 

 
Alternately, we could have found T2s using the relative pressures since we have an isentropic process involving an 
ideal gas, 

2((+%')
2((+&)

= 2%
2&

  =>  𝑝3(𝑇.5) = 𝑝3(𝑇-) 2
2%
2&
3, (11) 

where, 
pr(T1 = 900 ºR) = 8.411  (using the Ideal Gas Table), 
p2 = 25 psia, 
p1 = 100 psia, 
ð pr(T2s) = 2.10275 =>  T2s = 608.01 ºR   (using the Ideal Gas Table), 

which is the same temperature at state 2s found previously, within numerical error. 
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Now assume a throttling valve is contained within the control volume.  Equations (7) and (8) still hold for this 
scenario.  To find the downstream temperature, apply the 1st Law to the control volume to obtain, 

ℎ. = ℎ-, (12) 
assuming steady state, negligible KE and PE changes, adiabatic flow, and no work.  Recall that for an ideal gas, h = 
h(T) and, thus, T2 = T1.  Simplifying Eq. (8) gives, 

𝑠. − 𝑠- = −𝑅𝑙𝑛 22%
2&
3, (8) 

Using the given data, 
𝑠. − 𝑠- = 0.095044 Btu/(lbm.ºR), 

and, from Eq. (7), 
/̇
0̇
= 0.095044 Btu/(lbm.ºR). 

 
Comparing the results for the turbine and throttling valves, we see that the turbine introduces considerably less 
irreversibility into the flow than the valve.  The flow expansion through the turbine is more controlled (often done in 
stages rather than all at once), which is why the turbine has less irreversibility.    
  

 
 


