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As an idealization, it is assumed that air in a diesel engine cylinder, initially with a volume of 1 L, is compressed 
isentropically from 1 bar (abs) and 300 K to 10 bar (abs) in order to compress and heat the air prior to fuel injection.  
Assume that the molecular weight of air is 28.9 kg/kmol. 
 
a. Determine the final temperature and volume assuming the compression process is isentropic and the specific 

heats vary with temperature. 
b. Determine the final temperature and volume if the process is isentropic but the specific heats are assumed 

constant.  For this case assume the specific heat ratio for air is 1.4. 
c. The work required to compress the air for case (a).   
d. Plot the process on a T-s diagram. 
e. Is it harder or easier to compress the air if the air starts at a higher temperature?  Assume that the air mass is the 

same and the pressures at the initial and final states are still 1 bar (abs) and 10 bar (abs), respectively.  Support 
your answer. 
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SOLUTION: 
For an isentropic process involving an ideal gas, 

∆𝑠 = 0 = 𝑠!(𝑇") − 𝑠!(𝑇#) − 𝑅𝑙𝑛 ,
$!
$"
-, (1) 

𝑠!(𝑇") = 𝑠!(𝑇#) + 𝑅𝑙𝑛 ,
$!
$"
-. (2) 

Using the given data and the ideal gas table for air, 
T1 = 300 K => s0(T1) = 1.703 kJ/(kg.K), 
p1 = 1 bar (abs), 
p2 = 10 bar (abs), 
Rair = %&#

'($%&
= ).+#,	kJ (kmol.K)⁄

").7	kg kmol⁄ = 0.2877 kJ/(kg.K), 
ð s0(T2) = 2.36541 kJ/(kg.K)  =>  T2 = 575 K. 

 
The final volume may be found using the ideal gas law, 

$!9!
%:!

= 𝑚 = $"9"
%:"

  =>  𝑉" = 𝑉# ,
$"
$!
- ,:!

:"
-. (3) 

Using the given and calculated data, 
V2 = 0.192 L. 

Note that the air mass is calculated to be:  m = 0.0116 kg. 
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An alternate method for working this part of the problem is to make use of the “relative pressure”, pr (recall that pr is 
not, in fact, a pressure), 

$&!
$&"

= $!
$"

  =>  𝑝;" = 𝑝;# ,
$!
$"
-, (4) 

where, 
pr1 = pr(T1 = 300 K) = 1.3860   (from the Ideal Gas Table for air), 
p2 = 10 bar (abs)  and  p1 = 1 bar (abs), 
ð pr2 = 13.860  =>  T2 = 574 K, which is the same answer found previously (to within numerical error). 

Recall that Eq. (4) can only be used for ideal gases undergoing an isentropic process. 
 
Similarly, the volume at State 2 for an ideal gas undergoing an isentropic process can be found using a “relative 
volume” (not really a volume, but that’s what it’s called), 

<&!
<&"

= <!
<"

  => <&!
<&"

= 9!
9"

  =>  𝑉" = 𝑉# ,
<&!
<&"
-, (4) 

where, 
V1 = 1 L, 
vr1 = vr(T1 = 300 K) = 621.2  (from the Ideal Gas Table for air), 
vr2 = vr(T2 = 574 K) = 119.0   (from the Ideal Gas Table for air), 
ð V2 =  0.192 L, which is the same answer found previously. 

 
For part (b), we are to assume the air behaves as a perfect gas, i.e., an ideal gas with constant specific heats.  For a 
perfect gas undergoing an isentropic process, 

:!
:"
= ,$!

$"
-
'("
'   =>  𝑇" = 𝑇# ,

$!
$"
-
'("
'  (5) 

Using the given data and k = 1.4, T2 = 579 K.  This value is less than 1% larger than the more accurate value 
calculated previously (where the specific heats can vary with temperature). 
 
The volume can be found using the following expression, which is also for a perfect gas undergoing an isentropic 
process, 

:!
:"
= ,<"

<!
-
=>#

= ,9"
9!
-
=>#

  => using Eq. (5) =>  ,$!
$"
-
'("
' = ,9"

9!
-
=>#

  =>  𝑉" = 𝑉# ,
$!
$"
-
>"'. (6) 

Substituting the given and calculated values, V2 = 0.193 L, which is less than 1% larger than the more accurate value 
found previously.  As can be observed in this problem, the perfect gas assumption gives accurate values over this 
range in temperature values (300 K to 575 K). 
 
 
 
 
 
 
 
 
For part (c), apply the 1st Law using a control volume surrounding the air in the cylinder,  

∆𝐸?9 = ∑ 𝑚(ℎ + 𝑘𝑒 + 𝑝𝑒)@A − ∑ 𝑚(ℎ + 𝑘𝑒 + 𝑝𝑒)BCD + 𝑄@A +𝑊@A, (7) 
where, 

∆𝐸?9 = ∆𝑈 + ∆𝐾𝐸 + ∆𝑃𝐸 = ∆𝑈 = 𝑚(𝑢" − 𝑢#)    (neglecting changes in KE and PE), (8) 
∑ 𝑚(ℎ + 𝑘𝑒 + 𝑝𝑒)@A − ∑ 𝑚(ℎ + 𝑘𝑒 + 𝑝𝑒)BCD = 0     (no inlets or outlets), (9) 
𝑄@A = 0   (assuming adiabatic operation), (10) 
𝑊@A =?    (11) 

Substitute and solve for the work,  
𝑊@A = 𝑚(𝑢" − 𝑢#), (12) 

Using the temperatures of T1 = 300 K and T2 = 575 K, 
u1 = u(T1) = 214.1 kJ/kg    and   u2 = u(T2) = 415.8 kJ/kg, 
ð Win = 2.34 kJ. 

 
  

air 

Win 
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Now consider how the work changes as the initial temperature increases, but the air mass and pressures remain the 
same.  From Eq. (12) we observe that the work is proportional to the change in internal energy, i.e., 

𝑊@A ∝ Δ𝑢. (13) 
For an ideal gas, u = u(T) and from the figure below where u is plotted as a function of T, we observe that u is a 
nearly linear function of T.  Thus, larger DT values will give larger Du values.   

 
 
The DT is found indirectly from Eq. (2), 

𝑠!(𝑇") = 𝑠!(𝑇#) + 𝑅𝑙𝑛 ,
$!
$"
-  =>  𝑠!(𝑇") − 𝑠!(𝑇#) = 𝑅𝑙𝑛 ,$!

$"
-  =>  ∆𝑠! = constant, (14) 

since p2/p1 and R are constants.  Now examine the plot of s0 as a function of T in the figure above.  Here the curve 
has negative curvature, meaning that for the same Ds0, the DT will be larger at larger T values.  Thus, as T increases, 
Ds0 increases => DT increases => Du increases => Win increases. 
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