An isolated system of total mass m is formed by mixing two equal masses of the same liquid, assumed incompressible with the same specific heat c, initially at the absolute temperatures T_{1} and T_{2}. Eventually the system attains an equilibrium state.
a. Determine the amount of entropy produced in terms of m, c, T_{1}, and T_{2}.
b. Demonstrate that σ must be positive if $T_{1} \neq T_{2}$.

SOLUTION:

Apply the Entropy Equation to a control volume that includes the liquids,

$$
\begin{equation*}
\Delta S=\int_{b} \frac{\delta Q_{\text {into }} C V}{T}+\sigma+\sum_{\text {in }} m s-\sum_{o u t} m s \tag{1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Delta S=\Delta S_{1}+\Delta S_{2}=\frac{1}{2} m c \ln \left(\frac{T_{f}}{T_{1}}\right)+\frac{1}{2} m c \ln \left(\frac{T_{f}}{T_{2}}\right) \quad \text { (assuming incompressible and constant specific heats), } \tag{2}
\end{equation*}
$$

$\int_{b} \frac{\delta Q_{\text {into } C V}}{T}=0$, (the control volume is isolated),
$\sum_{\text {in }} m s-\sum_{\text {out }} m s=0 \quad$ (the control volume has no inlets or outlets).
Substitute and solve for the entropy production,

$$
\begin{align*}
& \sigma=\frac{1}{2} m c \ln \left(\frac{T_{f}}{T_{1}}\right)+\frac{1}{2} m c \ln \left(\frac{T_{f}}{T_{2}}\right)=\frac{1}{2} m c\left[\ln \left(\frac{T_{f}}{T_{1}}\right)+\ln \left(\frac{T_{f}}{T_{2}}\right)\right], \tag{5}\\
& \sigma=\frac{1}{2} m c \ln \left(\frac{T_{f}^{2}}{T_{1} T_{2}}\right), \tag{6}
\end{align*}
$$

Applying the $1^{\text {st }}$ Law to the same CV,

$$
\begin{equation*}
\Delta E=\sum_{i n} m(h+k e+p e)-\sum_{o u t} m(h+k e+p e)+Q_{i n t o}-W_{b y} \tag{7}
\end{equation*}
$$

where,

$$
\begin{align*}
& \Delta E=\Delta U+\Delta K E+\Delta P E=\Delta U=\Delta U_{1}+\Delta U_{2}=\frac{1}{2} m c\left(T_{f}-T_{1}\right)+\frac{1}{2} m c\left(T_{f}-T_{2}\right), \tag{8}\\
& \quad \Delta E=\frac{1}{2} m c\left(2 T_{f}-T_{1}-T_{2}\right) \quad \text { (assuming incompressible and constant specific heats), } \\
& \sum_{i n} m(h+k e+p e)-\sum_{o u t} m(h+k e+p e)=0 \text { (the CV has no inlets or outlets), } \tag{9}\\
& Q_{i n t o}=0 \text { (the control volume is isolated), } \tag{10}\\
& W_{b y}=0 \text { (the control volume is isolated), } \tag{11}
\end{align*}
$$

Substitute and solve for T_{f},

$$
\begin{align*}
& \frac{1}{2} m c\left(2 T_{f}-T_{1}-T_{2}\right)=0, \tag{12}\\
& T_{f}=\frac{1}{2}\left(T_{1}+T_{2}\right) \tag{13}
\end{align*}
$$

Substitute Eq. (13) into Eq. (6) and simplify,

$$
\begin{align*}
& \sigma=\frac{1}{2} m c \ln \left[\frac{\frac{1}{4}\left(T_{1}+T_{2}\right)^{2}}{T_{1} T_{2}}\right], \tag{16}\\
& \frac{\sigma}{\frac{1}{2} m c}=\ln \left[\frac{\frac{1}{4}\left(T_{1}+T_{2}\right)^{2}}{T_{1} T_{2}}\right], \tag{17}
\end{align*}
$$

Note that in order for $\sigma \geq 0$ (to satisfy the $2^{\text {nd }}$ Law),

$$
\begin{align*}
& \frac{\left(T_{1}+T_{2}\right)^{2}}{4 T_{1} T_{2}} \geq 1 \Rightarrow T_{1}^{2}+2 T_{1} T_{2}+T_{2}^{2} \geq 4 T_{1} T_{2} \Rightarrow T_{1}^{2}-2 T_{1} T_{2}+T_{2}^{2} \geq 0 \tag{18}\\
& \left(T_{1}-T_{2}\right)^{2} \geq 0 \tag{19}
\end{align*}
$$

Equation (19) is equal to zero if $T_{1}=T_{2}$, which results in $\sigma=0$ and an internally reversible process. Equation (19) is greater than zero when either $T_{1}>T_{2}$ or $T_{2}>T_{1}$, which corresponds to $\sigma>0$ and an internally irreversible process.

