Air expands isothermally at steady state with no internal irreversibilities through a turbine from 10 bar (abs) and 500 K to 2 bar (abs). Determine the rate of heat transfer per unit mass flow rate of air and power per unit mass flow rate of air.

SOLUTION:

Apply the Entropy Equation to a control volume surrounding the turbine,

$$
\begin{equation*}
\frac{d S_{C V}}{d t}=\int_{C S} \frac{\delta \dot{Q}_{\text {into } C V}}{T}+\dot{\sigma}_{C V}+\sum_{\text {in }} \dot{m} s-\sum_{\text {out }} \dot{m} s \tag{1}
\end{equation*}
$$

where,

$$
\begin{align*}
& \frac{d S_{C V}}{d t}=0, \quad \text { (steady flow) } \tag{2}\\
& \int_{C S} \frac{\delta \dot{Q}_{\text {into } C V}}{T}=\frac{\dot{Q}_{\text {into } C V}}{T}, \quad \text { (the process is isothermal, so the temperature doesn't vary around the CS) } \tag{3}\\
& \dot{\sigma}_{C V}=0, \quad(\text { an internally reversible process) } \tag{4}\\
& \sum_{\text {in }} \dot{m} s-\sum_{\text {out }} \dot{m} s=\dot{m}\left(s_{1}-s_{2}\right), \quad \text { (one inlet/one outlet and steady flow) } \tag{5}
\end{align*}
$$

Substitute and solve for the rate of heat transfer per unit mass flow rate,

$$
\begin{align*}
& 0=\frac{\dot{Q}_{\text {into } C V}}{T}+\dot{m}\left(s_{1}-s_{2}\right), \tag{6}\\
& \frac{\dot{Q}_{\text {into } C V}}{\dot{m}}=T\left(s_{2}-s_{1}\right) . \tag{7}
\end{align*}
$$

The change in the specific entropy, assuming ideal gas behavior, is,

$$
\begin{equation*}
s_{2}-s_{1}=s^{0}\left(T_{2}\right)-s^{0}\left(T_{1}\right)-R_{\text {air }} \ln \left(\frac{p_{2}}{p_{1}}\right) \tag{8}
\end{equation*}
$$

Note that since the process is isothermal, $T_{2}=T_{1}$ and the previous equation may be simplified to,

$$
\begin{equation*}
s_{2}-s_{1}=-R_{\text {air }} \ln \left(\frac{p_{2}}{p_{1}}\right) \tag{9}
\end{equation*}
$$

Using the given data,

$$
\begin{aligned}
& T=500 \mathrm{~K}, \\
& R_{\text {air }}=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), \\
& p_{1}=10 \mathrm{bar}(\mathrm{abs}), \\
& p_{2}=2 \mathrm{bar}(\mathrm{abs}), \\
& \Rightarrow s_{2}-s_{1}=0.46191 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), \\
& \Rightarrow \frac{\dot{Q}_{\text {into }} \mathrm{CV}}{\dot{m}}=231 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

The power per unit mass flow rate may be found using the $1^{\text {st }}$ Law applied to the same control volume,

$$
\begin{equation*}
\frac{d E_{C V}}{d t}=\dot{Q}_{\text {into } C V}-\dot{W}_{b y C V}+\sum_{i n} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right)-\sum_{\text {out }} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right), \tag{10}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{d E_{C V}}{d t}=0, \text { (steady) } \tag{11}
\end{equation*}
$$

$$
\sum_{\text {in }} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right)-\sum_{\text {out }} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right)=\dot{m}\left(h_{1}-h_{2}\right)
$$

(assuming changes in kinetic and potential energy are negligible)
Note that since for an ideal gas $h=h(T)$ and the process is isothermal, $h_{2}=h_{1}$. Thus, simplifying Eq. (10) gives,

$$
\begin{equation*}
\frac{\dot{W}_{b y} C V}{\dot{m}}=\frac{\dot{Q}_{\text {into }} C V}{\dot{m}} . \tag{13}
\end{equation*}
$$

