Nitrogen $\left(\mathrm{N}_{2}\right)$ enters an insulated compressor operating at steady state at 1 bar (abs) and $37{ }^{\circ} \mathrm{C}$ with a mass flow rate of $1000 \mathrm{~kg} / \mathrm{h}$ and exits at $10 \mathrm{bar}(\mathrm{abs})$. Kinetic and potential energy changes through the compressor are negligible. The nitrogen can be modeled as an ideal gas with a specific heat ratio of 1.391 and a specific heat at constant pressure of $1.056 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$.
a. Determine the minimum theoretical power input required to operate the compressor and the corresponding exit temperature.
b. If the exit temperature is $397^{\circ} \mathrm{C}$, determine the power input and the compressor efficiency.

SOLUTION:

To find the power required to operate the compressor, apply the First Law to a control volume surrounding the compressor as shown in the following figure.

$$
\begin{equation*}
\frac{d E_{C V}}{d t}=\sum_{\text {in }}\left(h+\frac{1}{2} V^{2}+g z\right) \dot{m}-\sum_{\text {out }}\left(h+\frac{1}{2} V^{2}+g z\right) \dot{m}+\underset{Q_{\text {into }}^{\text {CV }}}{ }+\underset{W_{\text {other,on }}^{C V}}{C} \tag{1}
\end{equation*}
$$

where,

$$
\begin{align*}
& \frac{d E_{C V}}{d t}=0 \quad \text { (steady flow assumed) } \tag{2}\\
& \sum_{\text {in }}\left(h+\frac{1}{2} V^{2}+g z\right) \dot{m}-\sum_{\text {out }}\left(h+\frac{1}{2} V^{2}+g z\right) \dot{m}=\dot{m}_{1} h_{1}-\dot{m}_{2} h_{2}=\dot{m}\left(h_{1}-h_{2}\right)
\end{align*}
$$

(changes in KE and PE neglected; from COM, the mass flow rates are the same)
$\dot{Q}_{\substack{\text { into } \\ \text { CV }}}=0 \quad$ (adiabatic operation since insulated).
Solving for the power added into the compressor,

$$
\begin{equation*}
\dot{W}_{\substack{\text { other,on } \\ \mathrm{CV}}}=\dot{m}\left(h_{2}-h_{1}\right) . \tag{5}
\end{equation*}
$$

If we further assume that the nitrogen behaves as a perfect gas, i.e., it has constant specific heats, which is a reasonable assumption if the temperature change is only a few hundred degrees, then,

$$
\begin{equation*}
\dot{W}_{\substack{\text { other,on } \\ \mathrm{CV}}}=\dot{m} c_{p}\left(T_{2}-T_{1}\right) . \tag{6}
\end{equation*}
$$

To calculate the minimum power required to operate the compressor, assume reversible operation. Since the flow is then adiabatic and reversible, it will also be isentropic. For isentropic operation of a perfect gas,

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\left(\frac{T_{2 s}}{T_{1}}\right)^{\frac{k}{k-1}} \Rightarrow T_{2 s}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}} \tag{7}
\end{equation*}
$$

where the subscript " s " has been added to the temperature at state 2 to indicate isentropic conditions. Using the given parameters,

$$
\begin{aligned}
T_{1} & =37^{\circ} \mathrm{C}=310 \mathrm{~K} \\
p_{2} & =10 \operatorname{bar}(\mathrm{abs}) \\
p_{1} & =1 \operatorname{bar}(\mathrm{abs}) \\
k & =1.391, \\
\Rightarrow & T_{2 s}=592 \mathrm{~K}\left(=319^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Substituting into Eq. (6) gives,

with $c_{p}=1.056 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$.
Using the actual measured temperature of $T_{2}=397^{\circ} \mathrm{C}=670 \mathrm{~K}$,

$$
\dot{W}_{\text {other, into }}=106 \mathrm{~kW} \text {. }
$$

The efficiency of the compressor is given by,

$$
\eta=\frac{\binom{\dot{W}_{\text {other,into }}}{\mathrm{CV}}_{\min }}{\dot{W}_{\text {other,into }}}=0.78
$$

If we assume ideal, rather than perfect, gas behavior, then outlet temperature corresponding to an isentropic process is found using,

$$
\begin{equation*}
s_{2}-s_{1}=0=s_{2}^{0}\left(T_{2 s}\right)-s_{1}^{0}\left(T_{1}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right) \Rightarrow \bar{s}_{2}^{0}\left(T_{2 s}\right)=\bar{s}_{1}^{0}\left(T_{1}\right)+\bar{R}_{u} \ln \left(\frac{p_{2}}{p_{1}}\right) \tag{8}
\end{equation*}
$$

with,
$\bar{s}_{1}^{0}\left(T_{1}=310 \mathrm{~K}\right)=192.638 \mathrm{~kJ} /(\mathrm{kmol} . \mathrm{K}) \quad\left(\right.$ Table A-23 in Moran et al., $\left.8^{\text {th }} \mathrm{ed}.\right)$,
$p_{2} / p_{1}=(10 \mathrm{bar}) /(1 \mathrm{bar})=10$,
$\bar{R}_{u}=8.314 \mathrm{~kJ} /(\mathrm{kmol} . \mathrm{K})$,
$\Rightarrow \bar{s}_{2}^{0}=211.78 \mathrm{~kJ} /(\mathrm{kmol} . \mathrm{K}) \Rightarrow T_{2 s}=594 \mathrm{~K}$ (interpolating in Table A-23).
This result is less than 1% different from the one found earlier assuming perfect gas behavior.

