The gas constant for a particular gas is found by dividing the universal gas constant ($\bar{R}_{u}=8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol} . \mathrm{K}}$) by the gas's molecular weight. What is the gas constant for CO_{2} ?

SOLUTION:
The molecular weight of CO_{2} is,

$$
\begin{equation*}
M_{C O_{2}}=M_{C}+2 M_{O}=12.01 \mathrm{~g} / \mathrm{mol}+2(16.00 \mathrm{~g} / \mathrm{mol})=44.01 \mathrm{~g} / \mathrm{mol}=44.01 \mathrm{~kg} / \mathrm{kmol} \tag{1}
\end{equation*}
$$

The gas constant for CO_{2} is then,

$$
\begin{align*}
& R_{\mathrm{CO}_{2}}=\frac{\bar{R}_{u}}{M_{C O_{2}}}=\frac{8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol.K}}}{44.01 \frac{\mathrm{~kg}}{\mathrm{kmol}}} \tag{2}\\
& R_{\mathrm{CO}_{2}}=0.1889 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} .
\end{align*}
$$

