The molecular weights of carbon and oxygen are $12.01 \mathrm{~g} / \mathrm{mol}$ and $16.00 \mathrm{~g} / \mathrm{mol}$, respectively. What is the specific volume, in $\mathrm{m}^{3} / \mathrm{kg}$, of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ if its molar specific volume is $22.27 \mathrm{~m}^{3} / \mathrm{kmol}$ ?

SOLUTION:
The molecular weight of $\mathrm{CO}_{2}$ is, $M_{C O_{2}}=M_{C}+2 M_{O}=12.01 \mathrm{~g} / \mathrm{mol}+2(16.00 \mathrm{~g} / \mathrm{mol})=44.01 \mathrm{~g} / \mathrm{mol}=44.01 \mathrm{~kg} / \mathrm{kmol}$.

The specific volume is related to the molar specific volume by,

$$
\begin{align*}
& v=\frac{\bar{v}}{M}=\frac{22.27 \frac{\mathrm{~m}^{3}}{\mathrm{kmol}}}{44.01 \frac{\mathrm{~kg}}{\mathrm{kmol}}},  \tag{2}\\
& v=0.506 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} .
\end{align*}
$$

