Determine the relative errors in calculating the specific volume, specific internal energy, and specific enthalpy for liquid water at a temperature and pressure of $100^{\circ} \mathrm{C}$ and 100 bar (abs), respectively, using thermodynamic property tables and using the compressed liquid approximations.

SOLUTION:
From the thermodynamic property tables for liquid water at $100^{\circ} \mathrm{C}$ and 100 bar (abs),

$$
\begin{array}{ll}
\hline v & =1.0385^{*} 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}, \\
\hline u & =416.23 \mathrm{~kJ} / \mathrm{kg}, \\
\hline h & =426.62 \mathrm{~kJ} / \mathrm{kg} .
\end{array}
$$

Using the saturated liquid approximations,

$$
\begin{aligned}
& v_{C L}(T, p) \approx v_{l}(T) \\
& u_{C L}(T, p) \approx u_{l}(T) \\
& h_{C L}(T, p) \approx h_{l}(T)+\left[p-p_{s a t}(T)\right] v_{l}(T)
\end{aligned}
$$

where,

$$
\begin{aligned}
& v_{l}\left(100^{\circ} \mathrm{C}\right)=1.0435^{*} 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}=>v \approx 1.0435^{*} 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}, \\
& u l\left(100^{\circ} \mathrm{C}\right)=419.06 \mathrm{~kJ} / \mathrm{kg} \Rightarrow \quad u \approx 419.06 \mathrm{~kJ} / \mathrm{kg}, \\
& h_{l}\left(100^{\circ} \mathrm{C}\right)=419.17 \mathrm{~kJ} / \mathrm{kg}, \\
& p_{\text {sat }}\left(100^{\circ} \mathrm{C}\right)=1.0142 \mathrm{bar}(\mathrm{abs}), \\
& \Rightarrow h \approx 429.499 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

The relative error, ε, in a property, P, is,

$$
\begin{equation*}
\varepsilon_{P}=\frac{P_{\text {approx }}-P_{\text {actual }}}{P_{\text {actual }}} . \tag{1}
\end{equation*}
$$

Thus, $\varepsilon_{v}=0.00481, \varepsilon_{u}=0.00680$, and $\varepsilon_{h}=0.00675$. The error is less than 1% in all cases, implying that the approximations are good ones.

Compressed Liquid Table for H2O

Temp. (C)	Volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	$\begin{gathered} \text { Entropy } \\ (\mathrm{kJ} / \mathrm{kg} / \mathrm{K}) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{aligned}$	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (kJ/kg/K)
	$\mathrm{p}=75 \mathrm{bar}=7.5 \mathrm{MPa}, \mathrm{T}_{\text {sat }}=290.54^{\circ} \mathrm{C}$				$\mathrm{p}=100 \mathrm{bar}=10.0 \mathrm{MPa}, \mathrm{T}_{\text {sat }}=\mathbf{3 1 1 . 0 0}{ }^{\circ} \mathrm{C}$			
20	9.9843E-04	83.46	90.95	0.29489	9.9731E-04	83.31	93.28	0.29435
40	1.0046E-03	166.63	174.16	0.56949	1.0035E-03	166.33	176.36	0.56851
80	1.0256E-03	333.25	340.95	1.0707	1.0244E-03	332.69	342.94	1.0691
100	1.0397E-03	416.93	424.73	1.3015	1.0385E-03	416.23	426.62	1.2996
140	1.0753E-03	585.75	593.81	1.7319	1.0738E-03	584.71	595.45	1.7293
180	1.1220E-03	757.96	766.37	2.1304	1.1200E-03	756.48	767.68	2.1271
220	1.1838E-03	936.17	945.05	2.5082	1.1809E-03	934.00	945.81	2.5037
260	1.2703E-03	1125.00	1134.50	2.8775	1.2653E-03	1121.60	1134.30	2.8710
Sat.	1.3682E-03	1282.70	1292.90	3.1662	1.4526E-03	1393.50	1408.10	3.3606

Saturated Liquid Vapor Mixture Table for H2O, organized by temperature

		Liquid				Vapor			
Temp. (C)	Press. (bar)	$\begin{gathered} \text { Volume } \\ \left(v_{\mathrm{f}}, \mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	Internal Energy ($\mathrm{u}_{\mathrm{f}, \mathrm{kJ}} \mathrm{kg}$)	Enthalpy $\left(h_{f}, k J / k g\right)$	$\begin{gathered} \text { Entropy } \\ \left(\mathrm{s}_{\mathrm{f}}, \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & \left(v_{\mathrm{g}}, \mathrm{~m}^{3} / \mathrm{kg}\right) \end{aligned}$	Internal Energy $\left(u_{g}, k J / k g\right)$	Enthalpy $\left(h_{g}, k J / k g\right)$	$\begin{array}{\|c} \text { Entropy } \\ \left(\mathrm{s}_{\mathrm{g}}, \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}\right) \\ \hline \end{array}$
-	-...-.0-	-..0-0.0-0	---..0-	--0.0-	***vt	*.Jvov	-uvovo	evoriv	\% 7.354
100	1.0142	0.0010435	419.06	419.17	1.3072	1.6718	2506.0	2675.6	7.3541

