Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa (abs), 300 K , with a mass flow rate of $6 \mathrm{~kg} / \mathrm{s}$. The compressor pressure ratio is 10 and the inlet temperature for each turbine stage is 1400 K . The pressure ratios across each turbine stage are equal. The turbine stages and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For a specific heat ratio of 1.4 , calculated:
a. the thermal efficiency of the cycle,
b. the back work ratio, and
c. the net power developed by the cycle.

SOLUTION:

Since we're assuming a cold air-standard analysis, state the properties of the air in the analysis:

$$
R=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}) \text { and } c_{p @ 300 \mathrm{~K}}=1.005 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}) .
$$

The net power from the cycle is found by applying the $1^{\text {st }} \mathrm{Law}$ to a CV surrounding the compressor and turbines (assuming SSSF, adiabatic operation, negligible KE and PE),

$$
\begin{equation*}
\dot{W}_{\text {out }, \text { net }}=\dot{m}\left(h_{1}-h_{2}+h_{3}-h_{4}+h_{5}-h_{6}\right) \tag{1}
\end{equation*}
$$

and, since we're performing a cold air-standard analysis, meaning the air is a perfect gas,

$$
\begin{equation*}
\dot{W}_{\text {out }, \text { net }}=\dot{m} c_{p}\left(T_{1}-T_{2}+T_{3}-T_{4}+T_{5}-T_{6}\right) . \tag{2}
\end{equation*}
$$

The power into the compressor is found by applying the $1^{\text {st }}$ Law to a CV surrounding just the compressor (assuming SSSF, adiabatic operation, negligible KE and PE),

$$
\begin{align*}
& \dot{W}_{i n}=\dot{m}\left(h_{2}-h_{1}\right), \tag{3}\\
& \dot{W}_{i n}=\dot{m} c_{p}\left(T_{2}-T_{1}\right) \quad \text { (assuming perfect gas behavior). } \tag{4}
\end{align*}
$$

The back work ratio (bwr) is,

$$
\begin{equation*}
b w r=\frac{\dot{W}_{\text {in }}}{\dot{W}_{\text {out }}}=\frac{\dot{W}_{\text {in }}}{\dot{W}_{\text {out }, \text { net }}+\dot{W}_{\text {in }}} . \tag{5}
\end{equation*}
$$

The rate at which heat is added into the two combustors is found by applying the $1^{\text {st }}$ Law to CVs surrounding each combustor (assuming SSSF, passive devices, negligible KE and PE),

$$
\begin{align*}
& \dot{Q}_{i n}=\dot{Q}_{i n, 1}+\dot{Q}_{i n, 2}=\dot{m}\left(h_{3}-h_{x}\right)+\dot{m}\left(h_{5}-h_{4}\right), \tag{6}\\
& \dot{Q}_{i n}=\dot{m} c_{p}\left(T_{3}-T_{x}+T_{5}-T_{4}\right) \text { (assuming perfect gas behavior). } \tag{7}
\end{align*}
$$

The thermal efficiency of the cycle is,

$$
\begin{equation*}
\eta=\frac{\dot{W}_{\text {out }, n e t}}{\dot{Q}_{\text {in }}} . \tag{8}
\end{equation*}
$$

Now find the temperatures at the various states.
State 1:

$$
\dot{m}=6 \mathrm{~kg} / \mathrm{s}, p_{1}=100 \mathrm{kPa}(\mathrm{abs}), T_{1}=300 \mathrm{~K} \quad \text { (given) }
$$

State $2 s$: (assuming the process is isentropic and involves a perfect gas)

$$
\begin{equation*}
\frac{T_{2 s}}{T_{1}}=\left(\frac{p_{2 s}}{p_{1}}\right)^{\frac{k-1}{k}} \Rightarrow T_{2 s}=579.21 \mathrm{~K} \text { using } p_{2 s} / p_{1}=p_{2} / p_{1}=10 \tag{9}
\end{equation*}
$$

State 2:

$$
\begin{aligned}
& \eta_{\text {comp,isen }}=\frac{w_{\text {in,isen }}}{w_{\text {in }}}=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}}=\frac{c_{p}\left(T_{2 s}-T_{1}\right)}{c_{p}\left(T_{2}-T_{1}\right)}=>T_{2}=T_{1}+\frac{T_{2 s}-T_{1}}{\eta_{\text {comp }, \text { isen }}}, \\
& \Rightarrow T_{2}=649.01 \mathrm{~K} .
\end{aligned}
$$

State 3:

$$
T_{3}=1400 \mathrm{~K} \text { (given) }
$$

State $4 s$:

$$
\begin{equation*}
\frac{T_{4 s}}{T_{3}}=\left(\frac{p_{4 s}}{p_{3}}\right)^{\frac{k-1}{k}} \Rightarrow T_{4 s}=1007.56 \mathrm{~K} \text { using } p_{3} / p_{4 s}=3.162 \tag{11}
\end{equation*}
$$

Note that since we're told that the pressure drops across both turbine stages are equal,

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{6}}=\left(\frac{p_{3}}{p_{4}}\right) \underbrace{\left(\frac{p_{4}}{p_{5}}\right)}_{=1} \underbrace{\left(\frac{p_{5}}{p_{6}}\right)}_{=p_{3} / p_{4}}=\left(\frac{p_{3}}{p_{4}}\right)^{2} \Rightarrow>\frac{p_{3}}{p_{4}}=\sqrt{\frac{p_{2}}{p_{1}}}=>\frac{p_{3}}{p_{4}}=\frac{p_{5}}{p_{6}}=3.162 . \tag{12}
\end{equation*}
$$

State 4:

$$
\begin{aligned}
& \eta_{\text {turb,isen }}=\frac{w_{\text {out }}}{w_{\text {out,isen }}}=\frac{h_{3}-h_{4}}{h_{3}-h_{4 s}}=\frac{c_{p}\left(T_{3}-T_{4}\right)}{c_{p}\left(T_{3}-T_{4 s}\right)}=>T_{4}=T_{3}-\eta_{\text {turb,isen }}\left(T_{3}-T_{4 s}\right), \\
& =>T_{4}=1086.05 \mathrm{~K} .
\end{aligned}
$$

State 5:

$$
T_{5}=1400 \mathrm{~K} \text { (given) }
$$

State $6 s$:

$$
\begin{equation*}
\frac{T_{6 s}}{T_{5}}=\left(\frac{p_{6 s}}{p_{5}}\right)^{\frac{k-1}{k}} \Rightarrow T_{6 s}=1007.56 \mathrm{~K} \text { using } p_{6 s} / p_{5}=3.162 \text { (Eq. (12)) } \tag{14}
\end{equation*}
$$

State 6:

$$
\begin{aligned}
& \eta_{\text {turb,isen }}=\frac{w_{\text {out }}}{w_{\text {out,isen }}}=\frac{h_{5}-h_{6}}{h_{5}-h_{6 s}}=\frac{c_{p}\left(T_{5}-T_{6}\right)}{c_{p}\left(T_{5}-T_{6 S}\right)}=>T_{6}=T_{5}-\eta_{\text {turb,isen }}\left(T_{5}-T_{6 s}\right), \\
& \Rightarrow T_{6}=1086.05 \mathrm{~K}
\end{aligned}
$$

State x :

$$
\begin{aligned}
& \eta_{\text {reg }}=\frac{h_{x}-h_{2}}{h_{6}-h_{2}}=\frac{c_{p}\left(T_{x}-T_{2}\right)}{c_{p}\left(T_{6}-T_{2}\right)}=>T_{x}=T_{2}+\eta_{\text {reg }}\left(T_{6}-T_{2}\right) \\
& \Rightarrow T_{x}=998.64 \mathrm{~K} \text { using } \eta_{\text {reg }}=0.80 \text { (given) and the previously calculated values. }
\end{aligned}
$$

Using the calculated temperatures and Eqs. (2), (4), (5), (7), and (8),
$\dot{W}_{\text {out, net }}=1680 \mathrm{~kW}$,
$\dot{W}_{\text {in }}=2100 \mathrm{~kW}$,
$\dot{Q}_{\text {in }}=4300 \mathrm{~kW}$,
$b w r=0.556=55.6 \%$,
$\eta=0.390=39.0 \%$.

Page 4 of 4

