Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of $60 \mathrm{~m}^{3} / \mathrm{s}$ at 0.8 bar (abs) and 280 K . The compressor pressure ratio is 20 and the maximum cycle temperature is 2100 K . The compressor and turbine isentropic efficiencies are 92% and 95%, respectively. Determine:
a. the net power developed from the cycle,
b. the rate of heat addition in the combustor, and
c. the thermal efficiency of the cycle.

SOLUTION:

Apply the $1^{\text {st }}$ Law to a control volume surrounding the compressor and turbine,

$$
\begin{equation*}
0=\dot{m}\left(h_{1}-h_{2}+h_{3}-h_{4}\right)-\dot{W}_{\text {out }, \text { net }}, \tag{2}
\end{equation*}
$$

(assuming steady state, negligible KE and PE, and adiabatic conditions)
$\dot{W}_{\text {out }, \text { net }}=\dot{m}\left(h_{1}-h_{2}+h_{3}-h_{4}\right)$.
The mass flow rate can be found from the conditions at State 1 and using the ideal gas law,

$$
\begin{align*}
& \dot{m}=\rho_{1} \dot{V}_{1}=\left(\frac{p_{1}}{R T_{1}}\right) \dot{V}_{1}, \tag{3}\\
& \Rightarrow \quad \dot{m}=59.731 \mathrm{~kg} / \mathrm{s}
\end{align*}
$$

Now determine the specific enthalpies at each of the states.
State 1:
$T_{1}=280 \mathrm{~K} \Rightarrow h_{1}=280.1 \mathrm{~kJ} / \mathrm{kg}, p_{r}\left(T_{1}\right)=1.0889 \quad$ (from the Ideal Gas Table)
State 3:
$T_{3}=2100 \mathrm{~K} \Rightarrow h_{3}=2377 \mathrm{~kJ} / \mathrm{kg}, p_{r}\left(T_{3}\right)=2559$ (from the IGT)
State 2:
$\eta_{\text {comp,isen }}=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}} \Rightarrow h_{2}=h_{1}+\frac{h_{2 s}-h_{1}}{\eta_{\text {comp, } \text {,isen }}}$.
State $2 s: p_{2} / p_{1}=p_{2 s} / p_{1}=20$,

$$
\begin{align*}
& \frac{p_{2 s}}{p_{1}}=\frac{p_{r}\left(T_{2 s}\right)}{p_{r}\left(T_{1}\right)}=>p_{r}\left(T_{2 s}\right)=p_{r}\left(T_{1}\right)\left(\frac{p_{2 s}}{p_{1}}\right) \quad \text { (isentropic compression of an ideal gas), } \tag{5}\\
& \Rightarrow p_{r}\left(T_{2 s}\right)=21.778=>T_{2 s}=649.33 \mathrm{~K}, h_{2 s}=659.29 \mathrm{~kJ} / \mathrm{kg} \text { (from IGT) }
\end{align*}
$$

Using Eq. (4) and the given and computed values,

$$
h_{2}=692.26 \mathrm{~kJ} / \mathrm{kg} .
$$

State 4:

$$
\begin{equation*}
\eta_{\text {turb }, \text { isen }}=\frac{h_{4}-h_{3}}{h_{4 s}-h_{3}} \Rightarrow h_{4}=h_{3}+\eta_{\text {turb,isen }}\left(h_{4 s}-h_{3}\right) . \tag{6}
\end{equation*}
$$

State $4 s: p_{3} / p_{4}=p_{3} / p_{4 s}=p_{2} / p_{1}=20$,

$$
\begin{align*}
& \frac{p_{3}}{p_{4 s}}=\frac{p_{r}\left(T_{3}\right)}{p_{r}\left(T_{4 s}\right)}=>p_{r}\left(T_{4 s}\right)=p_{r}\left(T_{3}\right)\left(\frac{p_{4 s}}{p_{3}}\right) \text { (isentropic expansion of an ideal gas), } \tag{7}\\
& \Rightarrow p_{r}\left(T_{4 s}\right)=127.95 \Rightarrow T_{4 s}=1029.19 \mathrm{~K}, h_{4 s}=1079.57 \mathrm{~kJ} / \mathrm{kg} \text { (from IGT) }
\end{align*}
$$

Using Eq. (6) and the given and computed values,

$$
h_{4}=1144.44 \mathrm{~kJ} / \mathrm{kg} .
$$

Using the state data, mass flow rate, and Eq. (2),

$$
\dot{W}_{\text {out }, \text { net }}=49.0 \mathrm{MJ} \text {. }
$$

The rate of heat addition into the combustor is found by applying the $1^{\text {st }}$ Law to a control volume surrounding the combustor,

$$
\begin{align*}
& 0=\dot{m}\left(h_{2}-h_{3}\right)+\dot{Q}_{i n}, \tag{8}\\
& \quad(\text { assuming steady state, negligible KE and PE, and a passive device) } \\
& \dot{Q}_{i n}=\dot{m}\left(h_{3}-h_{2}\right) \tag{9}
\end{align*}
$$

Using the previously calculated quantities,
$\dot{Q}_{\text {in }}=101 \mathrm{MW}$.
The cycle's thermal efficiency is,

$$
\begin{aligned}
& \eta=\frac{\dot{W}_{\text {out }, \text { net }}}{\dot{Q}_{\text {in }}}, \\
& \Rightarrow \eta=0.487=48.7 \% .
\end{aligned}
$$

