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On the island of Hawaii lava flows continuously into the ocean.  It is proposed 
to anchor a floating power plant offshore of the lava flow that uses ammonia as 
the working fluid.  The plant would exploit the temperature variation between 
the warm water near the surface at 130 ºF and seawater at 50 ºF from a depth of 
500 ft to produce power.  Using the properties of pure water for the seawater 
and modeling the power plant as a Rankine cycle, determine: 
a. the plant’s thermal efficiency, and 
b. the mass flow rate of ammonia in lbm/min, for a net power output of 300 

hp. 
c. the mass flow rates of seawater through the boiler and condenser, in 

lbm/min. 
For a related story, see:   
https://www.scientificamerican.com/article/hawaii-first-to-harness-deep-ocean-temperatures-for-power/ 
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Working fluid:  ammonia 
State 1: 

T1 = 120 ºF 
saturated vapor 
 

State 2: 
T2 = 60 ºF 

 
State 3: 

p3 = p2 
saturated liquid 

 
isentropic turbine efficiency = 0.80 
isentropic pump efficiency = 0.85 
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SOLUTION: 
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First find the temperatures, specific enthalpies, and specific entropies at each of the states using the property tables 
for ammonia. 

State p [psia] T [ºF] Phase x [-] h [Btu/lbm] s [Btu/(lbm. ºR)] 
1 286.47 (= psat) 120 sat. vapor 1 632.95 1.1405 
2 107.66 (= p3) 60 SLVMo,= 0.932429 591.626 1.16038 
2s 107.66 (= p2) 60 SLVMo 0.912476 581.295 1.1405 (= s1) 
3 107.66 (= psat) 60 sat. liquid 0 108.87 0.2314 
4 286.47 (= p1) 61.08 CL+ N/A 109.881 0.23374 
4s 286.47 (= p4) 60 CL+ N/A 109.729 0.2314 (= s3) 

 
oFor a SLVM, 
𝑥 = &'&!

&"'&!
, (1) 

ℎ = (1 − 𝑥)ℎ( + 𝑥ℎ). (2) 
State 2s:   

T2s = 60 ºF, s2s = s1 = 1.1405 Btu/(lbm.ºR)];  sf2s = 0.2314 Btu/(lbm.ºR), sg2s = 1.2277 Btu/(lbm.ºR)  
=> x2s = 0.912476. 
hf2s = 108.87 Btu/lbm, hg2s = 626.61 Btu/lbm  =>  h2s = 581.295 Btu/lbm. 

State 2: 
T2 = 60 ºF, h2 = 591.626 Btu/lbm (see below);  hf2 = 108.87 Btu/lbm, hg2 = 626.61 Btu/lbm   
=> x2 = 0.932429. 
sf2 = 0.2314 Btu/(lbm.ºR), sg2 = 1.2277 Btu/(lbm.ºR)   =>  s2 = 1.16038 Btu/(lbm.ºR). 

 
=To find the conditions at State 2, make use of the turbine isentropic efficiency, 

𝜂%$*+.,!&.". =
/̇#$%

/̇#$%,'()*
= 1+'1,

1+'1,(
  =>  ℎ2 = ℎ3 − 𝜂%$*+.,!&.".(ℎ3 − ℎ2&) = 591.626 Btu/lbm, (3) 

where h1 = 632.95 Btu/lbm, h2s = 581.295 Btu/lbm, and hturb.,isen.= 0.80. 
 
+ For a compressed liquid, 

ℎ45(𝑇, 𝑝) ≈ ℎ((𝑇) + [𝑝 − 𝑝&6%(𝑇)]𝑣((𝑇)   and   𝑠45(𝑇, 𝑝) ≈ 𝑠((𝑇) (4) 
State 4s: 

p4s = 286.47 psia, s4s = s3 = 0.2314 Btu/(lbm.ºR)  =>   
T4s = 60 ºF, psat,4s = 107.66 psia, vf4s = 0.02597 ft3/lbm, hf4s = 108.87 Btu/lbm => h4s = 109.729 Btu/lbm. 

 
=To find the conditions at State 4, make use of the pump isentropic efficiency, 

𝜂7$87,!&.". =
/̇'*,'()*
/̇'*

= 1-('1.
1-'1.

  =>  ℎ9 = ℎ: +
1-('1.

;/$0/,'()*.
= 109.881 Btu/lbm, (5) 

where h3 = 108.87 Btu/lbm, h4s = 109.729 Btu/lbm, and hpump,isen.= 0.85.  The temperature corresponding to this 
specific enthalpy is, after some linear interpolation, T4 = 61.08 ºF, and the specific entropy is, s4 = 0.23374 
Btu/(lbm.ºR). 
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Now apply the 1st Law to a control volume surrounding the turbine, 
<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" − �̇�#$%, (6) 
where, 

<=23
<%

= 0       (assuming steady state operation), (7) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ3 − ℎ2), (8) 

(neglecting kinetic and potential energy changes;  from COM �̇�3 = �̇�2 = �̇�) 
�̇�!" = 0  (assuming adiabatic operation), (9) 
�̇�#$% =?. (10) 

Substitute and solve for the power, 
/̇#$%
8̇

= ℎ3 − ℎ2. (11) 
Using the data from the table and the given mass flow rate, 

/̇#$%
8̇

= 41.324 Btu/lbm. 
 

Apply the 1st Law to a control volume surrounding the pump, 
<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" + �̇�!", (12) 
where, 

<=23
<%

= 0       (assuming steady state operation), (13) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ: − ℎ9), (14) 

(neglecting kinetic and potential energy changes;  from COM �̇�: = �̇�9 = �̇�) 
�̇�!" = 0  (assuming adiabatic operation), (15) 
�̇�!" =?. (16) 

Substitute and solve for the power, 
/̇'*
8̇
= ℎ9 − ℎ:. (17) 

Using the data from the table and the given mass flow rate, 
/̇'*
8̇
=  1.011 Btu/lbm. 

 
Apply the 1st Law to a CV surrounding the boiler, 

<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" − �̇�#$%, (18) 
where, 

<=23
<%

= 0       (assuming steady state operation), (19) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ9 − ℎ3), (20) 

(neglecting kinetic and potential energy changes;  from COM �̇�3 = �̇�9 = �̇�) 
�̇�!" =?, (21) 
�̇�#$% = 0   (the steam generator is a passive device). (22) 

Substitute and solve for the rate of heat transfer, 
>̇'*
8̇
= ℎ3 − ℎ9. (23) 

Using the data from the table and the given mass flow rate, 
>̇'*
8̇
= 523.069 Btu/lbm. 

 
Using the power in and power out results, 

/̇#$%,*)%
8̇

= /̇#$%
8̇

− /̇'*
8̇
= 40.313 Btu/lbm (24) 

 
The thermal efficiency for the power cycle is, 

𝜂 = /̇#$%,*)% 8̇⁄
>̇'* 8̇⁄

 = 0.0771 = 7.71%   (25) 
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This thermal efficiency is less than the Carnot cycle thermal efficiency of 
𝜂46*"#% = 1 − @2

@4
= 0.136 = 13.6%, (26) 

where TC = 509.67 ºR (= 50 ºF) and TH = 589.67 ºR (= 130 ºF).  The Rankine cycle efficiency is smaller than the 
Carnot cycle efficiency because of irreversibilities in the cycle.  Even if the Rankine cycle was ideal (isentropic 
conditions across the pump and turbine), it would still have a smaller efficiency than the Carnot cycle because the 
average temperature during heat addition is smaller than that for a Carnot cycle, i.e., the average temperature from 
State 4 to State 1 is smaller than the average temperature from State 4 to State 1 in a Carnot cycle. 
 
The mass flow rate in the cycle can be determined using Eq. (24) and the given net power output of �̇�#$%,".% = 300 
hp, 

/̇#$%,*)%
8̇

= 40.313 Btu/lbm =>  �̇� = :AA	hp
9A.:3:	Btu lbm⁄ = 316 lbm/min.  (27) 

 
 
Now determine the mass flow rate of the cooling water for the boiler.  Apply a control volume around the boiler and 
apply the 1st Law, 

<=23
<%

= ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" −∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% + �̇�!" + �̇�!", (28) 
where, 

<=23
<%

= 0       (assuming steady state operation), (29) 
∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)!" − ∑ �̇�(ℎ + 𝑘𝑒 + 𝑝𝑒)#$% = �̇�(ℎ9 − ℎ3) + �̇�+,&K(ℎL − ℎM), (30) 

(neglecting kinetic and potential energy changes;  from COM �̇�9 = �̇�3 = �̇� and �̇�L = �̇�M = �̇�+,&K) 
�̇�!" = 0  (assuming adiabatic operation), (31) 
�̇�!" = 0   (the device is passive). (32) 

Substitute and solve for the boiler seawater mass flow rate, 
0 = �̇�(ℎ9 − ℎ3) + �̇�+,&K(ℎL − ℎM), (33) 
�̇�+,&K = �̇� ;1-'1+

15'16
<. (34) 

The mass flow rate for the cycle was found in Eq. (27).  The specific enthalpies for States 4 and 1 are given in the 
table at the start of this solution.  Not enough information is given to determine the specific enthalpies for States 5 
and 6 using the compressed liquid approximation; however, since the temperature is small and seawater can be 
reasonably assumed to be incompressible, let, 

∆ℎ = ∆𝑢 + 𝑣∆𝑝 = ∆𝑢 = 𝑐∆𝑇. (35) 
where Dp = 0 since the pressure of the surrounding seawater at the inlet and outlet to the boiler is approximately the 
same.  The specific heat for seawater is found from a property table to be c = 0.999 Btu/(lbm.ºR).  Using T5 = 130 ºF 
and T6 = 125 ºF along with the previously determined values, 

�̇�+,&K = 33000 lbm/min. 
 

Performing a similar 1st Law analysis for a CV surrounding the condenser, but with c = 1.005 Btu/(lbm.ºR), 
�̇�N,&K = �̇� ;1,'1.

17'18
<, (36) 

�̇�N,&K = 30300 lbm/min. 
 
The efficiency of this power plant is small (7.71%).  Even for an ideal Carnot cycle the efficiency is small (13.6%). 
The small cycle thermal efficiency coupled with the large mass flow rates required for pumping the seawater 
(decreasing the net power out of the cycle even further) and the material and structural costs for operating in 
corrosive seawater make for a weak incentive to construct and operate this powerplant from a financial point of 
view. 
 
 
 


