An air-standard Otto cycle has a compression ratio of 10 . At the beginning of compression, the pressure is 100 kPa (abs) and temperature is $27^{\circ} \mathrm{C}$. The mass of air is 5 g and the maximum temperature in the cycle is $727^{\circ} \mathrm{C}$.
Determine:
a. the heat rejection, in kJ ,
b. the net work, in kJ,
c. the thermal efficiency of the cycle,
d. the mean effective pressure, in kPa (abs), and
e. sketch the process on a $T-s$ plot, clearly indicating states, paths, and lines of constant specific volume.

SOLUTION:

Note: $T_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$ and $T_{3}=727^{\circ} \mathrm{C}=1000 \mathrm{~K}$.
Assume air is an ideal gas so that,

$$
\begin{equation*}
\frac{v_{2}}{V_{1}}=\frac{v_{r}\left(T_{2}\right)}{v_{r}\left(T_{1}\right)}=>v_{r}\left(T_{2}\right)=v_{r}\left(T_{1}\right) \frac{v_{2}}{v_{1}} \tag{1}
\end{equation*}
$$

where,

$$
\begin{aligned}
& V_{2} / V_{1}=1 / 10=0.1 \quad \text { (given), } \\
& v_{r}\left(T_{1}=300 \mathrm{~K}\right)=621.2 \text { (using the Ideal Gas Table for air), } \\
& \Rightarrow \quad v_{r}\left(T_{2}\right)=62.12 .
\end{aligned}
$$

Using the Ideal Gas Table for air,
$T_{2}=730 \mathrm{~K}$ and $u_{2}=536.1 \mathrm{~kJ} / \mathrm{kg}$.
In addition, $u_{1}=214.1 \mathrm{~kJ} / \mathrm{kg}$.
Similarly,

$$
\begin{equation*}
\frac{V_{4}}{V_{3}}=\frac{v_{r}\left(T_{4}\right)}{v_{r}\left(T_{3}\right)}=>v_{r}\left(T_{4}\right)=v_{r}\left(T_{3}\right) \frac{V_{4}}{V_{3}} \tag{2}
\end{equation*}
$$

where,

$$
V_{4} / V_{3}=10 / 1=10 \text { (given), }
$$

$$
v_{r}\left(T_{3}=1000 \mathrm{~K}\right)=25.17 \text { (using the Ideal Gas Table for air), }
$$

$$
\Rightarrow \quad v_{r}\left(T_{4}\right)=251.7
$$

Using the Ideal Gas Table for air,
$T_{4}=430 \mathrm{~K}$ and $u_{4}=308.0 \mathrm{~kJ} / \mathrm{kg}$.
In addition, $u_{3}=758.9 \mathrm{~kJ} / \mathrm{kg}$.
Apply the $1^{\text {st }}$ Law to the system (i.e., the air), for process 2-3,

$$
\begin{equation*}
\Delta E_{s y s, 23}=Q_{\text {into sys }, 23}-W_{\text {by sys }, 23} \tag{3}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Delta E_{s y s, 23}=\Delta U_{s y s, 23}=m\left(u_{3}-u_{2}\right) \text { (Neglecting changes in kinetic and potential energies.), } \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
W_{\text {by sys,23 }}=0 \text { (Constant volume process.) } \tag{5}
\end{equation*}
$$

Substitute and simplify,
$Q_{\text {into sys,23 }}=m\left(u_{3}-u_{2}\right)$.
Using the previously determined and given values,
$Q_{\text {into sys, } 23}=1.114 \mathrm{~kJ}$.
Similarly, for process 4-1,

$$
\begin{equation*}
\Delta E_{s y s, 41}=Q_{\text {into } s y s, 41}-W_{\text {by sys }, 41} \tag{7}
\end{equation*}
$$

where,

$$
\begin{align*}
& \Delta E_{\text {sys }, 41}=\Delta U_{\text {sys, } 41}=m\left(u_{1}-u_{4}\right) \text { (Neglecting changes in kinetic and potential energies.), } \tag{8}\\
& W_{\text {by sys } 41}=0 \text { (Constant volume process.) } \tag{9}
\end{align*}
$$

Substitute and simplify,
$Q_{\text {into sys, } 41}=m\left(u_{1}-u_{4}\right)$.
Using the previously determined and given values,
$Q_{\text {into sys, } 41}=-0.4695 \mathrm{~kJ}$. Thus, 0.470 kJ of energy is rejected via heat transfer from the system.
The net work for the cycle may be found by applying the $1^{\text {st }}$ Law to the system over the entire cycle,

$$
\begin{equation*}
\Delta E_{\text {sys }, \text { cycle }}=Q_{\text {into sys }, \text { cycle }}-W_{\text {by sys,cycle }}, \tag{11}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Delta E_{s y s, c y c l e}=0 \text { (The net change in properties over a cycle is zero.) } \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
Q_{\text {into sys,cycle }}=Q_{\text {into sys,23 }}+Q_{\text {into sys,41 }} \text { (No heat is added in processes 1-2 and 3-4.) } \tag{13}
\end{equation*}
$$

Substitute and simplify,

$$
\begin{equation*}
W_{\text {by sys }, c y c l e}=Q_{\text {into sys }, 23}+Q_{\text {into sys }, 41} \tag{14}
\end{equation*}
$$

Using the previously calculated values,

$$
W_{b y s y s, c y c l e}=0.645 \mathrm{~kJ} \text {. }
$$

Alternately, we could have found the net work by applying the $1^{\text {st }}$ Law to the compression and power strokes of the cycle separately,

$$
\begin{align*}
& m\left(u_{2}-u_{1}\right)=-W_{\text {by }} s y s, 12 \tag{15}\\
& m\left(u_{4}-u_{3}\right)=-W_{\text {by }} \text { sys,34, } \tag{16}\\
& \Rightarrow W_{\text {by }} \text { sys,12 }=-1.61 \mathrm{~kJ} \text { and } W_{\text {by }} \text { sys,34 }=2.2545 \mathrm{~kJ}, \\
& \Rightarrow W_{\text {by sys,cycle }}=W_{\text {by } s y s, 12}+W_{\text {by } s y s, 34}=0.645 \mathrm{~kJ}, \text { which is the same answer found previously. }
\end{align*}
$$

The thermal efficiency for the cycle is,

$$
\begin{equation*}
\eta \equiv \frac{W_{\text {by }} \text { sys }, c y c l e}{} Q_{\text {into sys }}, \tag{17}
\end{equation*}
$$

Using the previously calculated values,
$\eta=0.578$.

The mean effective pressure is given by,

$$
\begin{equation*}
\text { mep } \equiv \frac{W_{\text {by sys,cycle }}}{V_{1}-V_{2}}=>\text { mep } \equiv \frac{W_{\text {by sys }, \text { cycle }}}{V_{1}\left(1-V_{2} / V_{1}\right)} \tag{18}
\end{equation*}
$$

where,

$$
\begin{equation*}
V_{1}=\frac{m R_{a i r} T_{1}}{p_{1}}, \tag{19}
\end{equation*}
$$

with,
$R_{\text {air }}=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), p_{1}=100 \mathrm{kPa}(\mathrm{abs})$, and $V_{2} / V_{1}=(1 / 10)=0.1$,
$\Rightarrow \quad V_{1}=4.31 * 10^{-3} \mathrm{~m}^{3} \Rightarrow$ mep $=166 \mathrm{kPa}(\mathrm{abs})$

